Worcestershire Regulatory Services

Supporting and protecting you

2016 Air Quality Annual Status Report (ASR) including 2015 Updated Screening Assessment (USA)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

December 2016

Local Authority Officer	Christopher Poole
Department	Land and Air Quality Team
Address	Worcestershire Regulatory Services Wyre Forest House Finepoint Way Kidderminster Worcestershire DY11 7WF
Telephone	01905 822799
E-mail	wrsenquiries@worcsregservices.gov.uk
Report Reference number	WCC/ASR2016
Date	December 2016

Executive Summary: Air Quality in Our Area Why air quality matters

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas^{1,2}. The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion³.

Air Quality in Worcester City

Worcestershire Regulatory Services (WRS) is a shared service formed from the Environmental Health and Licensing departments of the six Worcestershire District Councils. Responsibility for managing (monitoring and reporting of) local air quality transferred from the partnership councils to WRS in April 2011.

Monitoring results within Worcester City Council (WCC) area demonstrate no discernible trend in concentrations across the district in 2015 or over the 5 year period 2011-15.

Three Air Quality Management Areas (AQMA's) were declared by WCC in 2009 for exceedances of the annual average mean objective for nitrogen dioxide (NO₂):

- Dolday/Bridge Street AQMA declared 1st March 2009;
- Lowesmoor/Rainbow Hill AQMA declared 1st March 2009; and
- Newtown Road AQMA declared 1st March 2009.

¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010

² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013

There have been no measured exceedances of NO_2 in the Newtown Road AQMA since 2007, and the AQMA was revoked by WCC on 30th July 2014.

A further AQMA was declared by WCC for the St Johns area of Worcester City for exceedance of the annual mean objective for NO_2 on 26^{th} September 2014.

Details of declaration and plans of the AQMAs can be found on the following pages of WRS website: <u>http://www.worcsregservices.gov.uk/pollution/air-quality/air-qualitymanagement-areas.aspx</u>

In 2015, there continue to be exceedances of the annual average mean objective for NO₂ within the Dolday/Bridge Street and St Johns AQMAs which therefore must remain in place.

No exceedances of the objective were recorded within the Lowesmoor/Rainbow Hill AQMA in 2015 when taking concentrations at nearest receptor into consideration; however concentrations remain within 5% of the annual average mean objective for NO₂ in Lowesmoor. WRS on behalf of WCC continue to monitor concentrations within the AQMA in 2016 and will review in 2017.

In addition to the 3 AQMAs outlined above, there are two study areas WRS are currently assessing on behalf of WCC to determine if further action is required.

A Detailed Assessment is currently underway of Foregate Street, The Tything and The Butts to determine if declaration of a new AQMA in the city centre is required. Eight new passive diffusion tube monitoring locations were erected in this study area in 2014 to provide additional data for this assessment and an automatic analyser was emplaced in late November 2015 for a period of 12 months. The assessment will be completed in 2017. A detailed assessment of the London Road and Sidbury area, including automatic monitoring, was originally planned for the latter part of 2016. However, revised policy guidance from Defra in April 2016 introduced fast tracking for AQMA declarations and removed the requirement of Local Authorities to undertake detailed assessment. There are a few exceptional circumstances to fast tracking an AQMA declaration where proceeding with detailed assessment may be preferable, one of which is where borderline concentrations have been recorded as at monitoring locations LR3 and LR5 in 2015. Thus, a review of whether to proceed with declaration of a new London Road AQMA or proceeding with detailed assessment of the study area is required, or not, will be undertaken following review of NO₂ concentrations measured in 2016 and adjusted for bias, in spring 2017.

Actions to Improve Air Quality

In 2013, WRS produced a countywide Air Quality Action Plan (AQAP) for Worcestershire which was adopted by WCC on 13th November 2013. WRS have produced two updates to the AQAP, the latest in September 2016. For details of all measures completed, in progress or planned, please refer to the 'Air Quality Action Plan Progress Report for Worcestershire April 2015-2016'. A copy of this, the previous update and the AQAP is available to download via

http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx

In 2014, WRS set up the Worcestershire Air Quality Steering Group and sub-groups to facilitate progressing implementation of prioritised actions identified in the AQAP. The Worcester Urban (Steering) Sub-Group covers the Dolday/Bridge Street, Lowesmoor/Rainbow Hill and the St. John's AQMAs plus the wider Worcester City centre area. The sub-group currently comprises representatives of WRS, the Worcestershire County Council Air Quality Liaison Officer, and local County and district Councillors.

Local Priorities and Challenges

In November 2014, Worcestershire County Council produced a technical discussion paper for the Worcestershire Air Quality Steering Group which presented a number of transport-focused options for each location with the intention of improving air quality. The appraisal presented in the paper confirms that congestion and poor accessibility in Worcester are directly linked to air quality.

In a small cathedral city with a limited road network we see AQMAs and emerging areas of poor air quality along arterial routes in and out of the city centre where poor accessibility and congestion are daily problems. Solving the issue of accessibility is key to solving the problem of air quality in the city. Currently there is no transport or accessibility strategy that focuses on the city centre itself.

The Worcester Urban Area (Steering) sub-group consider that a detailed city centre transport plan or 'Masterplan' setting out how the city centre should be developed and accessed for all modes of transport, is key to tackling poor air quality within the central AQMAs and identified areas of poor air quality. The sub-group have concluded the focus for the group moving forward should be on securing the inclusion of prioritised and other air quality improvement actions, in a wider low emission strategy for Worcester City, linked to the emerging city centre transport strategy or 'Masterplan'.

Central to the development of the 'Masterplan' is a transport model for the city centre. In February 2016 the County Council gave the following update on progress: 'Worcestershire County Council has identified the funding to build the Worcester City Centre Transport Model in the 2016/2017 financial year. As with all transport models, it could take up to 12 months to construct and validate this, although there are some opportunities to speed up the process, especially now a citywide Bluetooth-powered Journey Time Monitoring System is in operation. The County Council are engaging with Worcester City Council in this important process, recognising that to which will also need to consider the built environment and regeneration opportunities; particularly in the Shrub Hill area of the city.' Further information, including a copy of the technical discussion document, is available within the 'Air Quality Action Plan Progress Report for Worcestershire April 2013-2015' at http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx

In addition to the Worcester City Transport Model, Worcestershire County Council is also developing the fourth Local Transport Plan for the county which is expected to be ready for consultation in early 2017. WRS will continue to liaise with the County Council in the development of these packages to ensure that remediation of the AQMAs remain a strategic transport priority. Over the past five years WRS has experienced closer working ties with the County Council's Strategic Transport Team and it is anticipated that collaboration on their strategic policies and improvement schemes at the early planning stages will ensure that air quality improvements remain a priority across all of Worcestershire infrastructure.

WRS on behalf of Worcester City Council continue to monitor existing locations in 2016 to assess any improvements or degradation in NO₂ concentrations. The data gathered will assist in further assessment of areas of poor air quality outside the current AQMA's. It is anticipated a detailed assessment of the Foregate Street/ The Tything/The Butts area, including automatic monitoring, will be completed in 2017. Further update on monitoring and action progress will be provided in 2017 Annual Status Report.

How to Get Involved

There are a number of ways members of the public can help to improve local air quality:

• Walk or cycle around the city centre instead of driving;

• Worcestershire County Council have launched a car sharing website, LiftShare, to help people find others journeying to the same destinations to

share journeys and costs, and reduce traffic and emissions. Visit this link for more information: <u>https://worcestershire.liftshare.com/</u>

- General travel planning advice is available on Worcestershire County Council's website (including walking, cycling and bus maps and timetables).
- If you have to drive follow fuel efficient driving advice, often known as 'Smarter Driving Tips', to save on fuel and reduce your emissions. A number of websites promote such advice including:
 - http://www.energysavingtrust.org.uk/travel/driving-advice
 - http://www.theaa.com/driving-advice/fuels-environment/drive-smart
 - <u>http://www.dft.gov.uk/vca/fcb/smarter-driving-tips.asp</u>

Table of Contents

Executive Summary: Air Quality in Our Area	.i
Why air quality matters	i
Air Quality in Worcester City	i
Actions to Improve Air Quality	iii
Local Priorities and Challenges	iv
How to Get Involved	.v
1 Local Air Quality Management 1	0
2 Actions to Improve Air Quality	11
2.1 Air Quality Management Areas	11
2.2 Progress and Impact of Measures to address Air Quality in Worcester City	11
2.3 PM _{2.5} – Local Authority Approach to Reducing Emissions and or	
Concentrations	12
3 Air Quality Monitoring Data and Comparison with Air Quality	
Objectives and National Compliance1	14
3.1 Summary of Monitoring Undertaken	14
3.1.1 Automatic Monitoring Sites	14
3.1.2 Non-Automatic Monitoring Sites	14
3.2 Individual Pollutants	14
3.2.1 Nitrogen Dioxide (NO ₂)	14
Glossary of Terms	23
References	24
Appendix A: Monitoring Results	25
Appendix B: Full Monthly Diffusion Tube Results for 2015	31
Appendix C: Supporting Technical Information / Air Quality Monitoring	
Data QA/QC	33
Appendix D: Map(s) of Monitoring Locations	12
Appendix E: Summary of Air Quality Objectives in England	51
Appendix F: 2015 Annual Status Report (Updated Screening Assessment)	
for Worcester City Council	1

List of Tables

Table 2.1 – Declared Air Quality Management Areas	11
Table 3.1 - Summary of measured exceedances and borderline results in 2015	16

List of Figures

Figure. 3.1	Long Term Trend Graph of NO_2 concentrations at monitoring locations of 3 years or greater	14
Figure 3.2	Long Term Trend Graph of NO ₂ concentrations in Dolday/Bridge Street AQMA	17
Figure 3.3	Long Term Trend Graph of NO ₂ concentrations in Lowesmoor/ Astwood Road AQMA	18
Figure 3.4	Long Term Trend Graph of NO2 concentrations in St Johns AQMA	20
Figure 3.5	Long Term Trend Graph of NO ₂ concentrations within the Foregate Street/The Butts/the Tything Study Area	21
Figure 3.6	Long Term Trend Graph of NO ₂ concentrations within the London Road/Sidbury Study Area	22
Figure C.1	Loc. DDASH - Distance from road to relevant exposure calculation	35
Figure C.2	Loc. BrS - Distance from road to relevant exposure calculation	35
Figure C.3	Loc. Tyn2. Distance from road to relevant exposure calculation	36
Figure C.4	Loc. Fos. Distance from road to relevant exposure calculation	36
Figure C.5	Loc. Ast3. Distance from road to relevant exposure calculation	37
Figure C.6	Loc. NwR. Distance from road to relevant exposure calculation	37
Figure C.7	Loc. WhR. Distance from road to relevant exposure calculation	38
Figure C.8	Loc. LRW. Distance from road to relevant exposure calculation	38
Figure C.9	Loc. LR1. Distance from road to relevant exposure calculation	39
Figure C.10	Loc. LR2. Distance from road to relevant exposure calculation	39
Figure C.11	Loc. LR3. Distance from road to relevant exposure calculation	40
Figure C.12	Loc. LR4. Distance from road to relevant exposure calculation	40
Figure C.13	Loc. SidFG. Distance from road to relevant exposure calculation	41
Figure D.1	Map of Dolday/Bridge Street AQMA and The Butts Monitoring Locations	42
Figure D.2	Map of The Tything Monitoring Locations	43

Worcester City Council

Figure D.3	Map of Foregate Street and Lowesmoor AQMA Monitoring Locations	44
Figure D.4	Map of St Johns AQMA Monitoring Locations	45
Figure D.5	Map of McIntyre Road and Oldbury Road (West Worcester) Monitoring Location	46
Figure D.6	Map of Rainbow Hill AQMA Monitoring Locations	47
Figure D.7	Map of Newtown Road and Whittington Road (East Worcester) Monitoring Locations	48
Figure D.8	Map of London Road and Sidbury Monitoring Locations	49
Figure D.9	Map of Broom Hall Green Monitoring Location	50

1 Local Air Quality Management

This report provides an overview of air quality in Worcester City during 2015. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Worcester City Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

A summary of AQMAs declared by Worcester City Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at <u>http://www.worcsregservices.gov.uk/pollution/airquality/air-quality-management-areas.aspx</u>

AQMA Name	Pollutants and Air Quality Objectives	City / Town	One Line Description	Action Plan
Bridge Street / Dolday			City Centre one way system	Air Quality Action Plan Progress Report
Lowesmoor / Rainbow Hill	NO₂ annual mean	Worcester	A key bus and commuter corridor into City	for Worcestershire April 2015-2016 <u>http://www.worcsregs</u> <u>ervices.gov.uk/polluti</u> <u>on/air-quality/air- quality-action- plan.aspx</u>
St Johns			Key corridor on west side of river crossing	On-going work

Table 2.1 – Declared Air Quality Management Areas

2.2 Progress and Impact of Measures to address Air Quality in Worcester City

For details of all measures completed, in progress or planned please refer to the latest AQAP update: 'Air Quality Action Plan Progress Report for Worcestershire April 2015-2016' which is available online for review and download from http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx

A summary of progressed actions to April 2015 is also included within the '2015 Air Quality Annual Status Report (ASR) for Worcester City Council' a copy of which is provided in Appendix F.

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of $PM_{2.5}$ (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that $PM_{2.5}$ has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

There are currently no automatic $PM_{2.5}$ monitoring stations in Worcestershire. The nearest AURN $PM_{2.5}$ monitoring station is the Birmingham Acocks Green site approximately 23 miles to the north east of Worcester City.

WRS has reviewed the DEFRA national background maps to determine projected $PM_{2.5}$ concentrations with Worcester City for the 2015 calendar year. The average total $PM_{2.5}$ at 31 locations (centre points of 1km x 1km grids) across Worcester City is 10.61µg/m³, with a minimum concentration of 9.88µg/m³ and a maximum concentration of 12.03µg/m³.

This indicates that $PM_{2.5}$ concentrations within Worcester City are well below the annual average EU limit value for $PM_{2.5}$ of $25\mu g/m^3$.

As outlined in Policy Guidance LAQM.PG16 WRS have discussed the role of the DoPH, and the details of $PM_{2.5}$ levels across the County, with the Director of Public Health for Worcestershire County Council. The DoPH has not confirmed to WRS

that they are advocating or supporting any specific actions to reduce $PM_{2.5}$ concentrations across the County at this time.

In light of the above no additional actions are currently planned by Worcester City Council in relation to the reduction of $PM_{2.5}$ levels. However it is anticipated that any actions taken to improve NO₂ levels across the district will likely result in a linked improvement in $PM_{2.5}$ levels.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

Worcester City Council did not operate any automatic (continuous) monitoring sites throughout most of 2015. An automatic (continuous) monitor was installed at the end of November 2015 in Foregate Street, Worcester for the purposes of undertaking a detailed assessment to determine if declaration of a new Air Quality Management Area is required. This monitoring will be completed at the end of 2016 and reported in the next years Annual Status Report. There are no national monitoring sites (e.g. AURN) within Worcestershire.

3.1.2 Non-Automatic Monitoring Sites

Worcester City Council undertook non- automatic (passive) monitoring of NO_2 at 37 sites during 2015. Table A.1 in Appendix A shows the details of the sites.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.2 in Appendix A compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past 5 years with the air quality objective of $40\mu g/m^3$.

For diffusion tubes, the full 2015 dataset of monthly mean values is provided in Appendix B. Table A.3 in Appendix A provides a summary of Annual Mean NO₂ Monitoring Results calculated back to relevant exposure where appropriate.

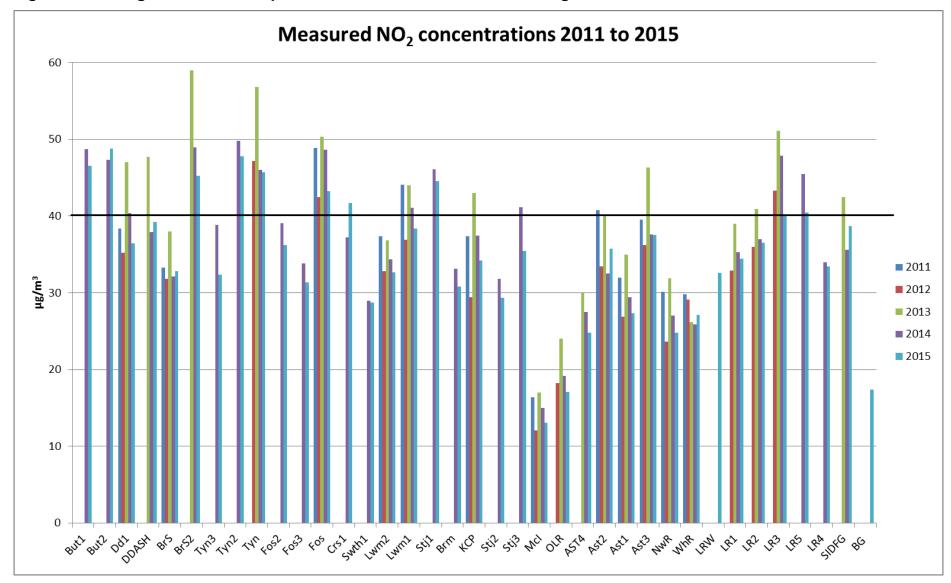


Figure 3.1 – Long Term Trend Graph of NO₂ concentrations at monitoring locations.

Figure 3.1 on the previous page shows the five year trend for NO_2 concentrations, annualised, adjusted for bias and calculated back to relevant exposure where applicable at all monitoring locations. The figure demonstrates there have been reductions in NO_2 at some locations between 2014 and 2015 but rises at other locations and overall there is no discernible trend in concentrations across the district.

Table 3.1 below provides a summary of measured exceedances in 2015 (annualised where necessary), whether representative of relevant exposure and within an existing AQMA or not.

Site ID	Within AQMA Y/N	Bias Adjusted Measurement (µg/m³)	Adjusted for distance to relevant exposure (µg/m³)
But1	N	46.59	No
But2	N	48.75	No
DDASH	Y	43.25	39.2
BrS	Y	38.47	32.8
BrS2	Y	45.26	No
Tyn2	N	48.86	47.8
Tyn	N	47.31	45.7
Fos	N	47.08	43.2
Crs1	N	41.72	No
Lwm1	Y	38.34	No
Stj1	Y	44.55	No
Ast3	Y	48.10	37.5
WhR	N	40.09	27.1
LRW	N	43.61	32.6
LR2	N	42.68	36.5
LR3	N	41.44	40.1
LR5	N	40.46	No
LR4	N	38.08	33.4
SIDFG	N	45.44	38.7

Table 3.1 Summary of measured	exceedances and borderline results in 2015
-------------------------------	--

Worcester City Council

The table above indicates there have been exceedances of the annual average air quality objective (AQO) for NO₂ or concentrations recorded within 5% of the AQO at 19 of the 37 monitoring locations in 2015. However, when taking into consideration the proximity to relevant exposure only 10 locations demonstrate exceedances in 2015 although it should be noted 5 of these locations are measurements at ground floor level with nearest receptors at first floor level. 3 more locations measure concentrations within 5% of the AQO. Of these, 4 locations are within existing AQMA's, 6 are located in a city centre area (Foregate Street/The Tything/The Butts) that will be subject of a Detailed Assessment in early 2017 and 3 locations are in an area, London Road, that will be assessed further in spring 2017.

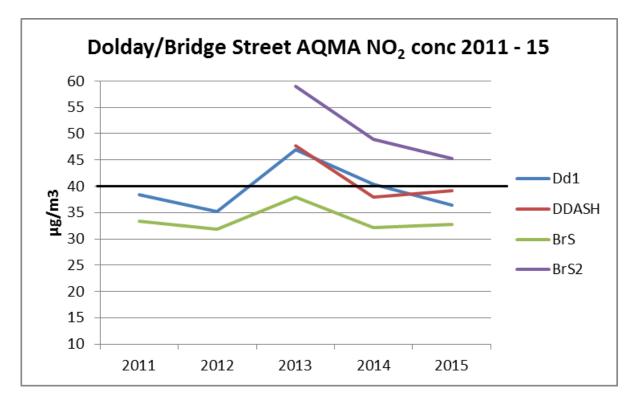
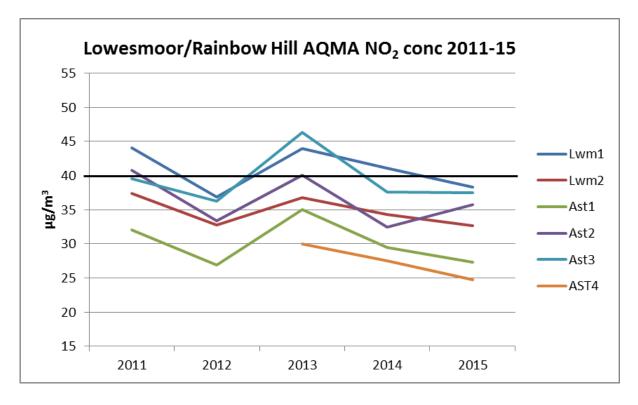
No annual means greater than $60\mu g/m^3$ have been recorded indicating it is unlikely there have been any exceedances of the 1-hour mean objective at these sites.

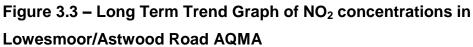
Dolday/Bridge Street AQMA

Exceedances have been recorded at two of the four monitoring locations within the AQMA in 2015 although only one of these, Loc. BrS2, is representative of relevant exposure. NO₂ concentrations at relevant exposure when calculated back from monitoring Loc. DDASH remain within 5% of the AQO.

Figure 3.2 below demonstrates the five year trend for NO₂ concentrations within the AQMA, following adjustment for bias and calculated back to relevant exposure where applicable.

Concentrations within the AQMA demonstrate a similar picture to the overall trend across the district, a reduction from 2013 highs but no discernable trend across a longer timeline. The measured concentrations confirm the AQMA should remain in place at this time.


Figure 3.2 – Long Term Trend Graph of NO₂ concentrations in Dolday/Bridge Street AQMA

Lowesmoor/Rainbow Hill AQMA

No exceedances have been recorded within this AQMA in 2015, when taking concentrations at nearest releveant receptor into consideration, however the highest recorded concentration of $38.34\mu g/m^3$, Loc. Lwm1, is just within 5% of the AQO.

Figure 3.3 below demonstrates the five year trend for NO₂ concentrations within the AQMA following adjustment for bias and calculated back to relevant exposure where applicable. This demonstrates a general reduction from highs recorded in 2013 and continuing to fall from 2014 measurements at 4 out of the 6 monitoring locations within the AQMA. Locations will continue to be monitored in 2016 and reviewed in 2017.

St Johns AQMA

One of the five monitoring locations, Loc. StJ1, within the St Johns AQMA measured an exceedance in 2015. Four of the five monitoring locations were only introduced for 2014, and therefore limited trend data is available at this time as demonstrated in Figure 3.4 below which shows NO₂ concentrations within the AQMA following adjustment for bias and calculated back to relevant exposure where applicable. The data demonstrates a reduction from measured concentrations of NO₂ in 2014 at all five locations within the AQMA. However, the measured concentrations confirm the AQMA should remain in place at this time.

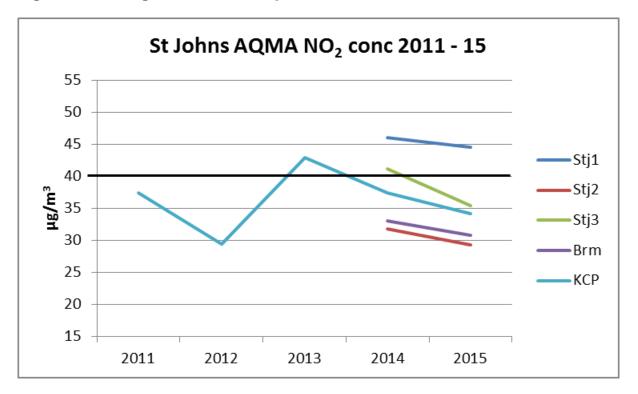
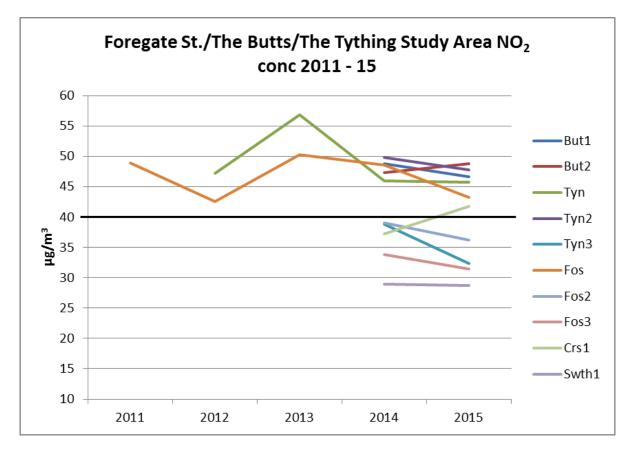
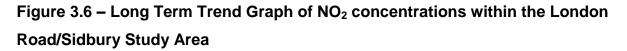
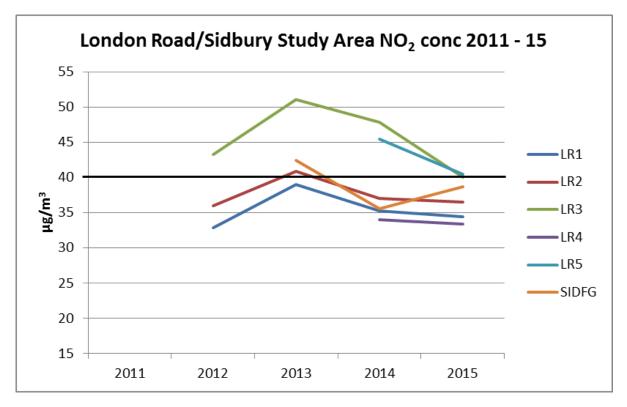


Figure 3.4 – Long Term Trend Graph of NO₂ concentrations in St Johns AQMA

Foregate Street/The Tything/The Butts, Worcester Study Area

Eight new monitoring locations were erected for 2014 for the purposes of undertaking a detailed assessment of this study area which will now be completed in 2017. Figure 3.5 below demonstrates the five year trend for NO₂ concentrations within the study area following adjustment for bias and calculated back to relevant exposure where applicable. Of the current ten locations within the study area six demonstrated exceedances of the AQO in 2015 when proximity to nearest receptors is taken into consideration. However, it should be noted 3 of the recorded exceedances are measurements at ground floor level with nearest receptors at first floor level.


Figure 3.5 – Long Term Trend Graph of NO₂ concentrations within the Foregate Street/The Butts/the Tything Study Area

London Road/Sidbury Study Area

Five of the six monitoring locations in London Road/Sidbury measured an exceedance or concentration within 5% of the AQO in 2015. However only 2 of the locations LR3 and LR5, demonstrate marginal exceedances and 1 more, SidFG, within 5% of the AQO when distance to relevant exposure is taken into consideration.

Figure 3.6 below demonstrates the five year trend for NO_2 concentrations within the AQMA following adjustment for bias, annualisation and calculated back to relevant exposure where applicable. All five monitoring locations within london Road demonstrate a reduction in NO_2 from measured concentrations in 2014.

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
ASR	Air quality Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England
EU	European Union
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of $10 \mu m$ (micrometres or microns) or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of $2.5 \mu m$ or less
QA/QC	Quality Assurance and Quality Control
ULEV	Ultra Low Emission Vehicles
WCC	Worcester City Council
WRS	Worcestershire Regulatory Services

References

- DEFRA (2016) 'Local Air Quality Management Policy Guidance LAQM PG.(16)'
- DEFRA (2016) 'Local Air Quality Management Technical Guidance LAQM TG.(16)'
- DEFRA (2015) 'National Diffusion Tube Bias Adjustment Factor Spreadsheet v.03/15'
- Worcestershire Regulatory Services (2013) 'Air Quality Action Plan for Worcestershire'
- Worcestershire Regulatory Services (2015) 'Air Quality Action Plan Progress Report for Worcestershire April 2013-April 2015'
- Worcestershire Regulatory Services (2016) 'Air Quality Action Plan Progress Report for Worcestershire April 2015 – March 2016'
- Worcestershire Regulatory Services (2015) 'Local Air Quality Management (LAQM) Update for Worcester City Council March 2015'
- Worcestershire Regulatory Services (2015) 'Worcester City Local Air Quality Management (Council Members) Update July 2015'
- Worcestershire Regulatory Services (2015) 'Worcestershire Air Quality Steering Group – Worcester Urban AQMAs Sub Group Newsletter August 2015'

Appendix A: Monitoring Results

Table A.1 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
But1	Magdala Court, The Butts	Roadside	384776	255107	NO ₂	N	0	1.15	N	2.5
But2	Magdala Court, The Butts	Roadside	384724	255086	NO ₂	N	0	1.67	Ν	2.38
Dd1	Ambirak, Dolday 1 opposite bus station	Roadside	384652	254986	NO ₂	Y	Ν	2.18	Ν	2.17
DDASH	Dolday LP opp All Saints House	Roadside	384682	254924	NO ₂	Y	2	2.33	Ν	2.13
BrS	Bridge Street LP o/s John Gwen House	Kerbside	384666	254818	NO ₂	Y	2	0.66	Ν	2.21
BrS2	Bridge Street Street Sign Opp John Gwyne House	Roadside	384695	254840	NO ₂	Y	1	1.96	Ν	2.06
Tyn3	No. 26 Upper Tything (LP opp KwikFit)	Roadside	384679	255998	NO ₂	N	0.1	2	Ν	2.22
Tyn2	Lamp & Flag PH Upper Tything (LP934)	Roadside	384767	255606	NO ₂	Ν	FF 1.29	2.28	Ν	2.21
Tyn	925 - Hammerchilds, Castle St/The Tything	Roadside	384833	255461	NO ₂	N	FF 1.29	1.63	Ν	2.21
Fos2	Hewitt Recruitment, 35 Foregate Street	Roadside	384866	255367	NO ₂	N	FF 1.36	3.2	Ν	2.14
Fos3	Café Mela, 22 Foregate Street	Roadside	384899	255329	NO ₂	N	FF 1.03	2.21	Ν	2.47
Fos	Foregate Street/ Shaw Street Junction	Kerbside	384941	255140	NO ₂	Ν	FF 1.19	1	Ν	2.47

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
Crs1	29 The Cross	Roadside	384967	255012	NO ₂	Ν	FF 1.33	3.35	N	2.17
Swth1	Scope shop, St. Swithin's Street	Roadside	385013	254987	NO ₂	Ν	FF 1.33	2.06	Ν	2.17
Lwm2	Lowesmoor 2 Town End. Adj private shop	Roadside	385164	255134	NO ₂	Y	FF 1	1.86	Ν	2.5
Lwm1	Lowesmoor 1 Rainbow Hill End o/s 4 Seasons	Roadside	385268	255191	NO ₂	Y	FF 1	1.43	Ν	2.56
StJ1	Scott of Tattoo, 1A St. Johns	Roadside	384137	254510	NO ₂	Y	FF 1.48	2.7	Ν	2.02
Brm	10 Bromyard Road	Urban Background	383967	254481	NO ₂	Ν	0m	8.8	Ν	1.9
КСР	King Charles Place o/s bakery LP 5372	Roadside	384016	254399	NO ₂	Y	1	2.2	Ν	2.09
StJ2	The Fortune House, 65 St. Johns	Roadside	384013	254356	NO ₂	Y	FF 1.53	2.22	Ν	1.97
StJ3	The Bell, 35 St. Johns	Roadside	384046	254424	NO ₂	Y	FF 1.53	2.05	Ν	1.97
McI	McIntyre Road LP	Urban Background	383454	254606	NO ₂	Ν	4.5	1.24	Ν	2.28
OLR	Oldbury Road junction with Henwick Rd	Roadside	383908	255353	NO ₂	N	17	2.22	N	2.28
AST4	246 Astwood Road	Roadside	386097	256565	NO ₂	N	0	9.85	N	2
Ast2	Astwood Road 2 LP Green Lane/Church St	Roadside	385990	256365	NO ₂	Y	4	1.4	N	3.66
Ast1	Astwood Road 1 LP 125 New Chequers/ Tintern junction	Roadside	386064	256518	NO ₂	Ν	2	1.53	Ν	2.5

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
Ast3	Astwood Road 3 Rainbow Hill	Roadside	385764	255968	NO ₂	Y	6.62	1.68	Ν	2.26
NwR	Newtown Road 1 LP (7570)	Roadside	387867	254973	NO ₂	N	2.02	2.48	Ν	2.46
WhR	Whittington Road LP 12449 in layby LHS	Roadside	387512	252845	NO ₂	N	20	1.25	Ν	2.28
LRW	London Road Waitrose	Kerbside	386654	253761	NO ₂	N	4	0.5	Ν	1.85
LR1	London Road LP 6569 by Bargain Booze	Roadside	385636	254158	NO ₂	N	2.9	1.63	N	2.12
LR2	London Road LP 6561 by Royal Court	Roadside	385428	254238	NO ₂	N	3	1.45	N	2.2
LR3	London Road traffic sign 572 for A58(City)	Roadside	385357	254272	NO ₂	N	0.5	1.77	Ν	2.31
LR5	London Road Bus stop SL6554 opp Bath Road	Roadside	385325	254329	NO ₂	N	0.25	1.45	Ν	2.22
LR4	London Road SL6565 adj No 61	Roadside	385525	254219	NO ₂	N	3.1	1.86	Ν	2.06
SIDFG	Sidbury Street Sign outside Fisher German Estate Agents	Roadside	385146	254474	NO ₂	N	FF 3.94	2.3	Ν	2.16
BG	West View Broomhall Green, Norton roundabout	Suburban	386297	252150	NO ₂	Ν	0	36	Ν	1.9

(1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

(2) N/A if not applicable.

Table A.2 – Annual Mean NO2 Monitoring Results

			Valid Data Capture for	Valid Data	NO ₂ Annual Mean Concentration (µg/m ³) ⁽³⁾							
Site ID	Site Type	Monitoring Type	Monitoring Period (%) ⁽¹⁾	Capture 2015 (%) ⁽²⁾	2011	2012	2013	2014	2015			
But1	Roadside	Diffusion Tube	100	100	-	-	-	48.74	46.59			
But2	Roadside	Diffusion Tube	92	92	-	-	-	47.36	48.75			
Dd1	Roadside	Diffusion Tube	92	92	38.4	35.2	47	40.39	36.44			
DDASH	Roadside	Diffusion Tube	100	100	-	-	53	41.86	43.25			
BrS	Kerbside	Diffusion Tube	92	92	38.4	36.5	45	38.41	38.47			
BrS2	Roadside	Diffusion Tube	100	100	-	-	59	48.92	45.26			
Tyn3	Roadside	Diffusion Tube	83	83	-	-	-	38.82	32.35			
Tyn2	Roadside	Diffusion Tube	100	100	-	-	-	50.98	48.86			
Tyn	Roadside	Diffusion Tube	100	100	-	47.2	59	47.71	47.31			
Fos2	Roadside	Diffusion Tube	100	100	-	-	-	39.05	36.24			
Fos3	Roadside	Diffusion Tube	100	100	-	-	-	33.84	31.38			
Fos	Kerbside	Diffusion Tube	100	100	53.2	45.9	55	53.61	47.08			
Crs1	Roadside	Diffusion Tube	75	75	-	-	-	37.24	41.72			
Swth1	Roadside	Diffusion Tube	83	83	-	-	-	28.98	28.69			
Lwm2	Roadside	Diffusion Tube	100	100	37.4	32.8	36.8	34.32	32.63			
Lwm1	Roadside	Diffusion Tube	100	100	44.1	36.9	44	41.09	38.34			
Stj1	Roadside	Diffusion Tube	92	92	-	-	-	46.06	44.55			
Brm	Urban Background	Diffusion Tube	100	100	-	-	-	33.13	30.85			
KCP	Roadside	Diffusion Tube	92	92	37.4	29.4	43	37.45	34.17			
Stj2	Roadside	Diffusion Tube	100	100	-	-	-	31.85	29.31			
Stj3	Roadside	Diffusion Tube	92	92	-	-	-	41.18	35.42			
McI	Urban Background	Diffusion Tube	100	100	16.4	12.1	17	14.99	13.08			
OLR	Roadside	Diffusion Tube	83	83	-	18.2	24	19.18	17.05			
AST4	Roadside	Diffusion Tube	100	100	-	-	30	27.47	24.78			
Ast2	Roadside	Diffusion Tube	100	100	40.8	33.4	40	32.50	35.74			
Ast1	Roadside	Diffusion Tube	92	92	32	26.9	35	29.43	27.34			
Ast3	Roadside	Diffusion Tube	100	100	50.6	45.7	<u>61</u>	50.32	48.10			

			Valid Data Capture for	Valid Data	NO ₂ Ar	D₂ Annual Mean Concentration (μg/m³)				
Site ID	Site Type	pe Monitoring Type Monitoring Period (%) ⁽¹⁾ Capture 2015 (%) ⁽²⁾ 2011	2011	2012	2013	2014	2015			
NwR	Roadside	Diffusion Tube	100	100	33.6	25.7	36	30.10	27.54	
WhR	Roadside	Diffusion Tube	92	92	39.9	39.5	43	41.30	40.09	
LRW	Kerbside	Diffusion Tube	92	92	-	-	-	-	43.61	
LR1	Roadside	Diffusion Tube	92	92	-	34.9	45	41.30	36.85	
LR2	Roadside	Diffusion Tube	100	100	-	41.3	48	44.14	42.68	
LR3	Roadside	Diffusion Tube	83	83	-	44.7	53	44.82	41.44	
LR5	Roadside	Diffusion Tube	100	100	-	-	-	45.51	40.46	
LR4	Roadside	Diffusion Tube	100	100	-	-	-	39.58	38.08	
SIDFG	Roadside	Diffusion Tube	58	58	-	-	50	42.13	45.44	
BG	Suburban	Diffusion Tube	100	100	-	-	-	-	17.41	

Notes: Exceedances of the NO₂ annual mean objective of $40\mu g/m^3$ are shown in **bold**.

NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Site ID	Sita Tura	In AQMA	Distance to kerb	Distance to Kerb of nearest road	NO ₂ Annual Mean Concentration (µg/m ³) ⁽¹⁾						
Sile iD	Site ID Site Type		of Relevant Exposure (m)	from monitoring location (m)	2011	2012	2013	2014	2015		
DDASH	Roadside	Y	4.33	2.33	-	-	47.7	37.88	39.2		
BrS	Kerbside	Y	2.66	0.66	33.3	31.8	38	32.1	32.8		
Tyn2	Roadside	N	2.61	2.28	-	-	-	49.8	47.8		
Fos	Kerbside	N	1.90	1	48.9	42.5	50.3	48.6	43.2		
Ast3	Roadside	Y	8.3	1.68	39.5	36.2	46.3	37.6	37.5		
NwR	Roadside	Y	5.5	2.48	30.1	23.6	31.9	27	24.8		
WhR	Roadside	N	20	1.25	29.8	29.1	26.2	25.9	27.1		
LRW	Kerbside	N	4	0.5	-	-	-	-	32.6		
LR1	Roadside	N	4.53	1.63	-	32.9	39	35.3	34.4		
LR2	Roadside	N	4.45	1.45	-	36	40.9	37	36.5		
LR3	Roadside	N	2.37	1.77	-	43.3	51.1	47.9	40.1		
LR4	Roadside	N	4.96	1.86	-	-	-	34	33.4		
SIDFG	Roadside	N	6.24	2.3	-	-	42.5	35.6	38.7		

Table A.3 – Summary of Annual Mean NO₂ Monitoring Results calculated back to relevant exposure

Notes: Exceedances of the NO₂ annual mean objective of $40\mu g/m^3$ are shown in **bold**.

NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

(1) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. All means have been calculated back from monitoring location to nearest relevant exposure. See Appendix C for details.

Appendix B: Full Monthly Diffusion Tube Results for 2015

Table B.1 – NO2 Monthly Diffusion Tube Results - 2015

	NO ₂ Mean Concentrations (μg/m ³)													
													Annu	al Mean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted
But1	62.18	61.93	63.27	54.80	41.07	51.50	42.69	57.87	51.76	68.28	47.02	40.21	53.55	46.59
But2	69.08		61.56	56.82	52.68	50.28	48.23	65.96	47.28	70.06	52.50	41.95	56.04	48.75
Dd1	45.48	48.29	46.31	45.63	39.67	39.02	31.18		40.03	53.50	36.63	35.01	41.89	36.44
DDASH	65.88	52.90	54.20	46.01	43.82	40.77	44.28	54.09	47.32	53.38	49.26	44.55	49.71	43.25
BrS	47.82	52.59	56.32	43.61		34.15	33.07	46.38	43.53	59.49	38.02	31.42	44.22	38.47
BrS2	54.66	61.81	61.86	59.82	42.41	49.63	44.22	52.81	49.02	65.31	42.30	40.35	52.02	45.26
Tyn3	39.25	47.86	45.32	38.36	30.49	30.08	28.16	38.67			36.44	37.23	37.18	32.35
Tyn2	72.66	62.85	62.42	51.11	45.96	54.57	49.29	57.34	47.48	61.39	56.89	51.97	56.16	48.86
Tyn	58.05	57.57	58.53	50.92	52.74	55.64	53.42	62.40	49.02	54.69	52.65	46.92	54.38	47.31
Fos2	48.13	45.40	42.84	33.43	54.26	35.90	34.37	37.09	36.19	48.10	41.02	43.23	41.66	36.24
Fos3	36.60	41.10	40.60	37.28	31.48	30.44	26.94	34.36	36.48	47.81	35.30	34.39	36.07	31.38
Fos	55.28	57.45	64.72	57.74	34.78	55.15	48.41	57.57	55.79	65.49	53.58	43.51	54.12	47.08
Crs1	60.21	54.25	49.03	40.00				46.83	38.69	48.10	49.58	44.89	47.95	41.72
Swth1		38.83	38.06	37.85	27.53	28.34	22.34	30.66	31.83	41.40	32.92		32.98	28.69
Lwm2	42.89	44.42	45.67	38.55	31.54	33.56	29.00	35.88	38.37	47.76	36.59	25.89	37.51	32.63
Lwm1	49.85	51.49	51.57	42.78	38.93	42.67	38.73	45.47	43.21	50.42	40.02	33.73	44.07	38.34
StJ1	49.66	58.08	54.26	53.72	48.25		45.26	55.57	48.40	48.35	43.40	58.36	51.21	44.55
Brm	44.72	46.66	42.84	29.79	30.15	30.66	25.32	31.24	28.89	38.01	36.64	40.57	35.46	30.85
KCP	43.70	49.03	46.71	38.72	23.98	36.25	26.80		43.33	44.62	40.36	38.58	39.28	34.17
StJ2	35.07	40.34	41.89	32.48	24.51	27.55	24.91	32.16	37.77	44.83	31.30	31.42	33.69	29.31
StJ3	37.29	46.96	46.31	42.56	34.57	35.20	30.99	36.66	45.08	50.62		41.54	40.71	35.42
Mcl	18.45	20.40	19.26	12.73	12.16	9.11	9.61	11.79	15.76	20.23	14.83	16.12	15.04	13.08
OLR	26.00	25.67	22.80	17.54	13.08	14.13	14.69	14.70	21.30	26.09			19.60	17.05
Ast4	32.40	34.95	29.79	25.50	22.70	22.68	20.60	27.30	31.12	35.53	29.04	30.16	28.48	24.78

Worcester City Council

	NO ₂ Mean Concentrations (μg/m ³)													
													Annua	al Mean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted
Ast2	45.10	47.43	44.34	36.89	33.08	35.38	35.04	40.93	40.44	46.62	46.05	41.64	41.08	35.74
Ast1	34.75	39.63	38.15	28.25		25.65	24.94	27.02	32.64	37.32	25.22	32.02	31.42	27.34
Ast3	62.32	59.32	63.33	53.32	46.88	49.04	46.09	45.38	64.12	69.22	52.12	52.39	55.29	48.10
NwR	37.67	42.41	43.25	31.22	24.00	27.64	22.32	23.20	32.16	38.29	30.76	27.02	31.66	27.54
WhR	51.20	52.86	53.35	47.82	33.70		37.66	39.22	47.00	53.79	47.71	42.54	46.08	40.09
LRW	54.42	59.95	59.07	45.53	43.61	51.81	41.92		53.50	61.64	40.51	39.45	50.13	43.61
LR1	53.83	51.80		41.47	36.81	33.22	33.51	37.05	43.79	47.72	44.43	42.35	42.36	36.85
LR2	55.80	53.80	57.30	44.10	42.05	49.08	45.97	46.81	53.94	44.83	48.25	46.78	49.06	42.68
LR3		54.39	54.71	41.07	41.79		39.91	42.63	49.54	58.34	48.45	45.49	47.63	41.44
LR5	45.81	50.32	56.46	49.71	37.95	44.37	31.89	38.81	60.34	65.36	39.82	37.30	46.51	40.46
LR4	44.09	51.09	56.73	42.33	37.12	40.10	33.86	38.45	49.71	61.30	37.9	32.50	43.77	38.08
SidFG		54.99			46.31	47.83	41.81	41.42	47.97			34.34	44.95	39.11
BG	26.34	26.04	22.66	18.03	14.26	14.46	14.36	16.60	22.88	29.22	18.6	16.71	20.01	17.41

(1) See Appendix C for details on bias adjustment

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

Sources of pollution

Worcester City Council have not identified any new or significant changes to sources as described in Chapter 7, section1 of Technical Guidance LAQM.TG(16).

Diffusion Tube Bias Adjustment Factors

The following UKAS accredited company provides Worcester City Council with nitrogen dioxide diffusion tubes and analysis:

Somerset Scientific Services, The Crescent County Hall Taunton TA1 4DY 0300 123 2224 somersetscientific@somerset.gov.uk

The 20% Triethanolamine (TEA) / De-ionised Water preparation method is used.

The bias adjustment factor applied to the results in 2015 was 0.87 (Spreadsheet Version No. 03/16) which were derived from the national studies.

QA/QC of Diffusion Tube Monitoring

Under the WASP Scheme Somerset Scientific Services performed 100% satisfactory for all periods in 2015 to November 2015 (NB no information was available for December 2015 at time of writing). Tube precision was generally 'Good' throughout 2015.

Short-term to Long-term Data Adjustment

Annualisation calculation for SidFG is shown below in Table C.1.

Site	Site Type	Annual Mean	Period Mean	Ratio
Birmingham Acocks Green	Background Urban	19	16.3	1.17
Birmingham Tyburn	Background Urban	30	26.6	1.13
Leamington Spa Rugby Road	Urban Traffic	20	17.0	1.18
Leominster	Suburban Background	8	6.9	1.17
			Average	1.16
			But2 result	39.11
			But2 annualised	45.4

Table C.1Annualisation calculations for SidFG – Sidbury (outside FisherGerman), Worcester

Estimates of concentrations at the nearest receptor

If an exceedance is measured at a monitoring site (or close to the air quality objective) which is not representative of public exposure, Defra advise the procedure specified in Technical Guidance LAQM.TG(16) should be used to estimate the concentration at the nearest receptor where applicable. For consistency and purposes of demonstrating long term trends this procedure has been adopted for *all* monitoring locations which are not representative of public exposure. The results are presented in Figures C.1 to C.13 below and summarised in Table A.4 above.

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	2.33 metres
Step 2	How far from the KERB is your receptor (in metres)?	4.33 metres
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	16.59087 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	43.25 µg/m ³
Result	The predicted annual mean NO_2 concentration (in $\mu g/m^3$) at your receptor	39.2 μg/m ³

Figure C.1 – Loc. DDASH - Distance from road to relevant exposure calculation

Figure C.2 – Loc. BrS - Distance from road to relevant exposure calculation

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	0.66 metres
Step 2	How far from the KERB is your receptor (in metres)?	2.66 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	16.59087 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	38.4714 µg/m ³
Result	The predicted annual mean NO $_2$ concentration (in μ g/m ³) at your receptor	32.8 µg/m ³

		C	AirQuality
VERIT	A U A S	Enter da	ta into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?		2.28 metres
Step 2	How far from the KERB is your receptor (in metres)?		2.61 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?		17.19616 µg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?		48.86 μg/m ³
Result	The predicted annual mean NO_2 concentration (in $\mu g/m^3$) at your receptor		47.8 μg/m ³

Figure C.3 – Loc. Tyn2. Distance from road to relevant exposure calculation

Figure C.4 – Loc. Fos. Distance from road to relevant exposure calculation

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	1 metres
Step 2	How far from the KERB is your receptor (in metres)?	1.9 metres
Step 3	What is the local annual mean background NO $_2$ concentration (in μ g/m ³)?	17.19616 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	47.08 μg/m ³
Result	The predicted annual mean NO $_{\rm 2}$ concentration (in $\mu g/m^3)$ at your receptor	43.2 μg/m ³

		C Air Quality
VERIT	AS	Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	1.68 metres
Step 2	How far from the KERB is your receptor (in metres)?	8.3 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	18.59151 µg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	48.1 μg/m ³
Result	The predicted annual mean NO_2 concentration (in $\mu g/m^3$) at your receptor	37.5 μg/m ³

Figure C.5 –Loc. Ast3. Distance from road to relevant exposure calculation

Figure C.6 – Loc. NwR. Distance from road to relevant exposure calculation

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	2.48 metres
Step 2	How far from the KERB is your receptor (in metres)?	5.5 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	13.84088 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	27.54 µg/m ³
Result	The predicted annual mean NO $_{\rm 2}$ concentration (in µg/m $^{\rm 3}$) at your receptor	24.8 μg/m ³

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	1.25 metres
Step 2	How far from the KERB is your receptor (in metres)?	20 metres
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	17.86799 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	40.09 μg/m ³
Result	The predicted annual mean NO_2 concentration (in µg/m ³) at your receptor	27.1 μg/m ³

Figure C.7 – Loc. Whr. Distance from road to relevant exposure calculation

Figure C.8 – Loc. LRW. Distance from road to relevant exposure calculation

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	0.5 metres
Step 2	How far from the KERB is your receptor (in metres)?	4 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	13.77601 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	43.6131 μg/m ³
Result	The predicted annual mean NO $_2$ concentration (in μ g/m ³) at your receptor	32.6 µg/m ³

		C	Air Q	uality
VERIT	A U A S	Enter da	<u>ta into the re</u>	d cells
Step 1	How far from the KERB was your measurement made (in metres)?		1.63	metres
Step 2	How far from the KERB is your receptor (in metres)?		2.9	metres
Step 3	What is the local annual mean background NO_2 concentration (in $\mu g/m^3)?$		17.48864	μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?		36.85	μg/m ³
Result	The predicted annual mean NO $_2$ concentration (in μ g/m ³) at your receptor		34.4	μg/m ³

Figure C.9 – Loc. LR1. Distance from road to relevant exposure calculation

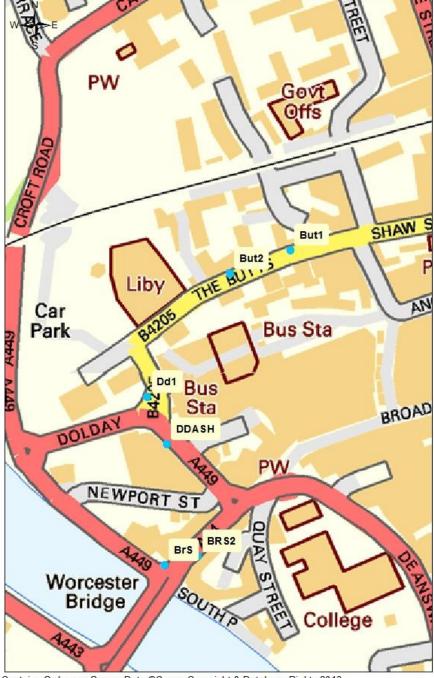
Figure C.10 – Loc. LR2. Distance from road to relevant exposure calculation

B U R E V E R I T		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	1.45 metres
Step 2	How far from the KERB is your receptor (in metres)?	4.45 metres
Step 3	What is the local annual mean background NO $_2$ concentration (in μ g/m ³)?	17.48864 μg/m ³
Step 4	What is your measured annual mean NO $_2$ concentration (in μ g/m ³)?	42.68 µg/m ³
Result	The predicted annual mean NO $_2$ concentration (in $\mu g/m^3$) at your receptor	36.5 μg/m ³

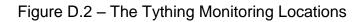
		C Air Quality
VERIT	ASI	Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	1.77 metres
Step 2	How far from the KERB is your receptor (in metres)?	2.27 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	17.48864 μg/m ³
Step 4	What is your measured annual mean NO $_2$ concentration (in μ g/m ³)?	41.44 μg/m ³
Result	The predicted annual mean NO $_{\rm 2}$ concentration (in $\mu g/m^3)$ at your receptor	40.1 μg/m ³

Figure C.11 – Loc. LR3. Distance from road to relevant exposure calculation

Figure C.12 – Loc. LR4. Distance from road to relevant exposure calculation


B U R E		Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	1.86 metres
Step 2	How far from the KERB is your receptor (in metres)?	4.96 metres
Step 3	What is the local annual mean background NO $_2$ concentration (in μ g/m ³)?	17.48864 μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	38.08 µg/m ³
Result	The predicted annual mean NO $_2$ concentration (in $\mu g/m^3$) at your receptor	33.4 μg/m ³

B U R E		C Air Quality
VERIT	AS	Enter data into the red cells
Step 1	How far from the KERB was your measurement made (in metres)?	2.3 metres
Step 2	How far from the KERB is your receptor (in metres)?	6.24 metres
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	17.48864 μg/m ³
Step 4	What is your measured annual mean NO_2 concentration (in μ g/m ³)?	45.44 μg/m ³
Result	The predicted annual mean NO $_2$ concentration (in $\mu g/m^3$) at your receptor	38.7 μg/m ³


Figure C.13 – Loc. SidFG. Distance from road to relevant exposure calculation

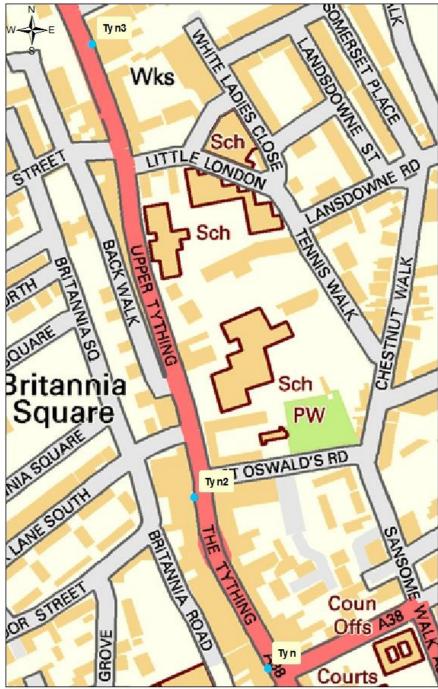
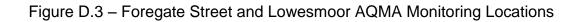
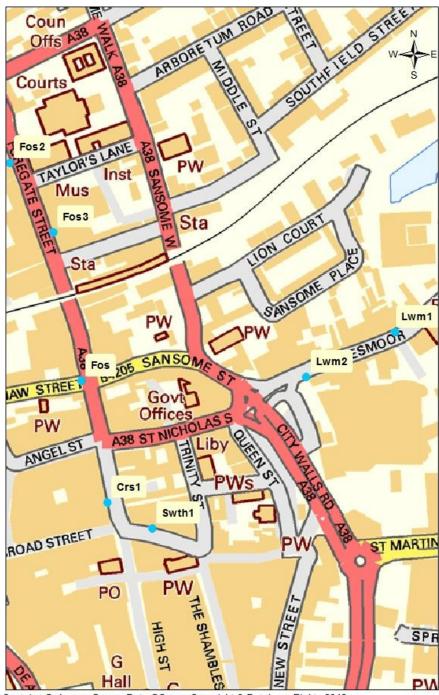
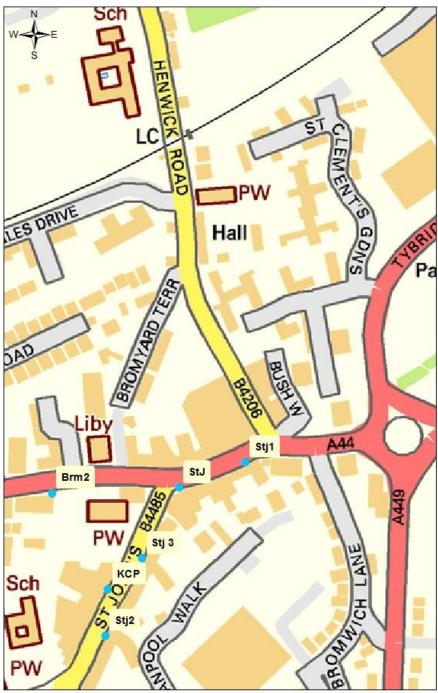
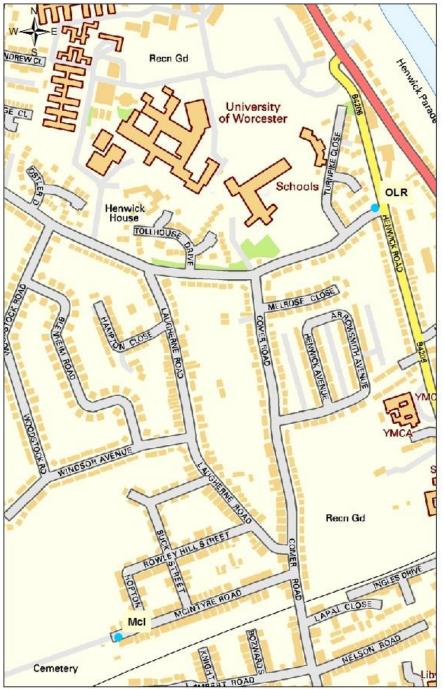

Appendix D: Map(s) of Monitoring Locations

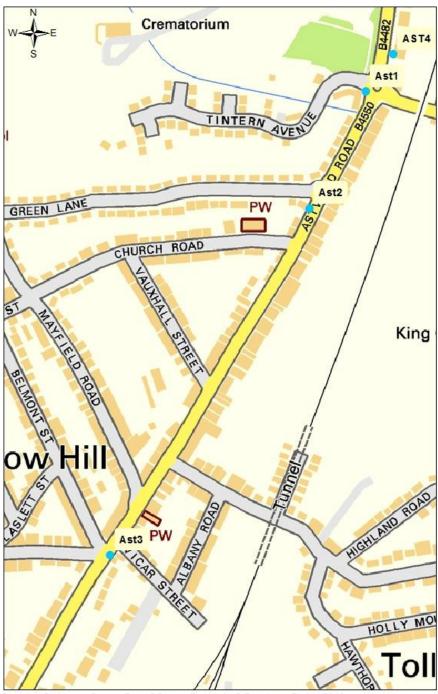
Figure D.1 – Dolday/Bridge Street AQMA and The Butts Monitoring Locations

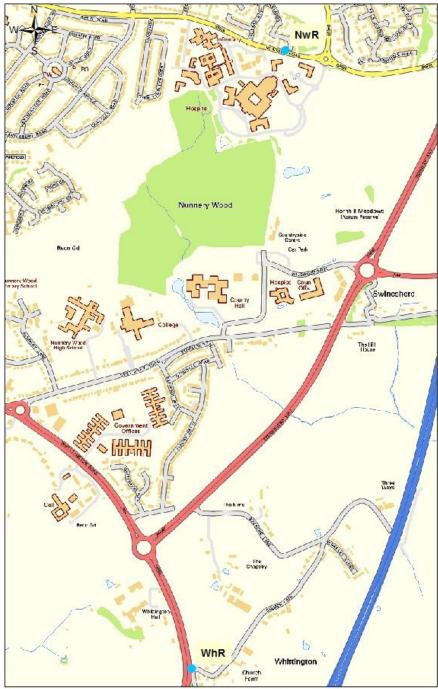


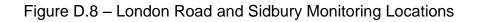

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

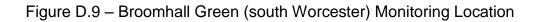

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013



Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

Figure D.7 – Newtown Road and Whittington Road (East Worcester) Monitoring Locations



Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective ⁴		
Follutant	Concentration	Measured as	
Nitrogen Dioxide	200 μg/m ³ not to be exceeded more than 18 times a year	1-hour mean	
(NO ₂)	40 μg/m ³	Annual mean	
Particulate Matter	50 μg/m ³ , not to be exceeded more than 35 times a year	24-hour mean	
(PM ₁₀)	40 μg/m ³	Annual mean	
	350 μg/m ³ , not to be exceeded more than 24 times a year	1-hour mean	
Sulphur Dioxide (SO ₂)	125 μg/m ³ , not to be exceeded more than 3 times a year	24-hour mean	
	266 µg/m ³ , not to be exceeded more than 35 times a year	15-minute mean	

⁴ The units are in microgrammes of pollutant per cubic metre of air (μ g/m³).

Appendix F: 2015 Annual Status Report (Updated Screening Assessment) for Worcester City Council

A copy of the 2015 Annual Status Report for Worcester City Council is provided on the following pages.

In December 2015 WRS along with two other UK authorities, Brighton and Lancaster, were approached by Defra LAQM team to trial the draft Annual Status Report template for the 2015 Updated and Screening Assessment (USA) for Worcester City Council. The draft ASR was completed and provided to Defra for close of the LAQM review consultation process in January 2016.

In May 2016 WRS contacted Defra LAQM team for feedback on the submitted report and received the following response. Following further contact with Fang Lin of the Report Submission Website WRS have included the 2015 report below and renamed the 2016 report accordingly:

From:	fang.lin@uk.bureauveritas.com on behalf of admin.rsw@uk.bureauveritas.com
Sent:	12 December 2016 13:00
To:	Chris Poole
Subject:	Re: Worcester 2015 USA and 2016 ASR reports
Attachments:	Twitter_2e0fffd3-2dfe-445e-be7c-97eaef0ca789.png;
	DontPrint_e9bd8d59-80cd-4c2b-a1e9-62be76b3fbee.png; Twitter
	2e0fffd3-2dfe-445e-be7c-97eaef0ca789.png; DontPrint_e9bd8d59-80cd-4c2b-
	a1e9-62be76b3fbee.png
Follow Up Flag:	Follow up
Flag Status:	Completed

Hi Chris.

Please can you submit it on the 2016 ASR submission slot and name it as combined USA 2015 and ASR 2016 so that the appraisal team and approval team are aware of it.

Regards, Fang Lin

Chris Poole

_	
From:	Aluko, Tutu (Defra) <tutu.aluko@defra.gsi.gov.uk></tutu.aluko@defra.gsi.gov.uk>
Sent:	17 May 2016 10:30
То:	Samuel.Rouse@brighton-hove.gov.uk; Chris Poole; pcartmell@lancaster.gov.uk
Cc:	Ladapo, Olawale (Defra)
Subject:	LAQM - ASR trial and report submission
Categories:	Useful keep

I would like to thank you for participating in the trial of the new ASR template, and do apologise that we have not got back to you with comments. As you know the trial was carried out to test the appropriateness of the ASR and the comments/ feedback you provided were very useful in helping us finalising the template. As you hopefully will be aware, the new streamlined LAQM guidance documents went live in April and local authorities are now required to submit completed ASRs by 30 June. We will appreciate it if you can please update the reports you submitted as part of the trial by including your latest monitoring data i.e. for 2015 and resubmit by 30 June. It will then be appraised and comments will be provided afterwards.

I hope you will also have received an invite to the next Regional Coordinators meeting scheduled for Monday 6 June here in Defra, where we hope to discuss more on the new ASR template.

Regards Tutu Aluko

Tutu Aluko| Policy Advisor Local Air Quality | Atmosphere and Industrial Emissions | Environmental Quality (EQ) | Department for Environment, Food and Rural Affairs |Direct Line 0208 026 4243 | <u>tutu.aluko@defra.gsi.gov.uk|Area</u> 2C Nobel House, 17 Smith Square, London, SW1P 3JR|Web: <u>http://uk-air.defra.gov.uk</u> |Twitter: @defraukair|

Department for Environment, Food and Rural Affairs (Defra)

This email and any attachments is intended for the named recipient only. If you have received it in error you have no authority to use, disclose,

store or copy any of its contents and you should destroy it and inform the sender.

Whilst this email and associated attachments will have been checked for known viruses whilst within Defra systems we can accept no responsibility once it has left our systems.

Communications on Defra's computer systems may be monitored and/or recorded to secure the effective operation of the system and for other lawful purposes.

2015 Air Quality Annual Status Report (ASR) for Worcester City Council

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

December 2015

Local Authority Officer	Christopher Poole
Department	Land and Air Quality Team, Worcestershire Regulatory Services
Address	Wyre Forest House, Finepoint Way, Kidderminster, Worcestershire, DY11 7WF
Telephone	01905 822799
E-mail	wrsenquiries@worcsregservices.gov.uk
Report Reference number	WCC ASR (USA) 2015 v3
Date	December 2015

Overview of Air Quality in Our Area

Why air quality matters

Clean air is vital for our health and the environment and essential for making sure our city is a welcoming place for all to live and work now and in the future. Everyone has a part to play in improving air quality, starting with the way we behave. Simple things like walking to work or school will benefit air quality as well as have knock-on benefits for your health and the environment. Think before you make a journey and ask yourself if it is necessary. Local Authorities and the communities who live within them are key to improving the air we breathe. What we do locally can also benefit regional air quality and help meet air quality limit values and objectives as set out in European and UK law.

The Local Air Quality Management (LAQM) system, as set out in Part IV of the Environment Act 1995, places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where exceedances are considered likely, the local authority must declare an Air Quality Management Area (AQMA) and prepare an Action Plan setting out the measures it intends to put in place in pursuit of the objectives.

Air quality in Worcester City

Worcestershire Regulatory Services (WRS) is a shared service formed from the Environmental Health and Licensing departments of the six Worcestershire District Councils. Responsibility for managing (monitoring and reporting of) local air quality transferred from the partnership councils to WRS in April 2011.

Monitoring results within Worcester City Council (WCC) area demonstrate there has been a general reduction in NO_2 concentrations between 2013 and 2014 across the district but there is no discernible upward or downward trend in concentrations over the 5 year period 2010-14. Three Air Quality Management Areas (AQMA's) were declared by WCC in 2009 for exceedances of the annual average mean objective for nitrogen dioxide (NO₂):

- Dolday/Bridge Street AQMA declared 1st March 2009;
- Lowesmoor/Rainbow Hill AQMA declared 1st March 2009; and
- Newtown Road AQMA declared 1st March 2009.

The requirement for declaration of an additional AQMA in the St Johns area of the city has been considered by WCC following the outcome of a Detailed Assessment in 2010. Measured concentrations in 2012 did not show any exceedance of the annual mean objective for NO₂, and the decision to declare an AQMA was put on hold pending further monitoring results. Annual average results of monitoring in 2013 confirmed exceedances of the annual mean objective for NO₂ and WCC subsequently declared the new St Johns AQMA on 26th September 2014.

However, there have been no measured exceedances of NO_2 in the Newtown Road AQMA since 2007, and the AQMA was revoked by WCC on 30th July 2014.

In 2014, there continue to be exceedances of the annual mean objective for NO₂ within the Dolday/Bridge Street and St Johns AQMAs which therefore must remain in place.

No exceedances of the objective were recorded within the Lowesmoor/Rainbow Hill AQMA in 2014 when taking concentrations at nearest receptor into consideration. WRS on behalf of WCC will continue to monitor concentrations within the AQMA in 2015/16.

A Detailed Assessment is currently underway of Foregate Street, The Tything and The Butts to determine if declaration of a new AQMA in the city centre is required. Eight new monitoring locations were erected in 2014 to provide additional data for this assessment. A decision whether to proceed with further assessment of the London Road and Sidbury area will be undertaken following the publication and consideration of new policy guidance and monitoring evidence later in 2016.

In 2013, WRS produced a countywide Air Quality Action Plan (AQAP) for Worcestershire which was adopted by WCC on 13th November 2013. The AQAP is available to download via the following link:

http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx

WRS submitted an update, the 'Air Quality Action Plan Progress Report for Worcestershire April 2013-2015', to Defra in November 2015. A copy of this is also available via <u>http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx</u>.

WRS set up the Worcestershire Air Quality Steering Group to facilitate progressing implementation of actions identified in the AQAP. At the inaugural Steering Group meeting, on 18th June 2014, it was agreed to establish a number of subgroups. The Worcester Urban Sub Group covers the Dolday/Bridge Street, Lowesmoor/Rainbow Hill and the St. John's AQMAs plus the wider Worcester City centre area. The sub-group currently comprises representatives of WRS, the Worcestershire County Council Air Quality Liaison Officer, and local County and district Councillors.

More information on the set up of the Steering Group can be found in the 'Air Quality Action Plan Progress Report for Worcestershire April 2013-2015' and the minutes at http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-steering-group.aspx

Actions to improve air quality

Worcester City Council and Worcestershire County Council have taken forward a number of measures during the year to end of April 2015 in pursuit of improving local air quality, most are on-going. Examples include:

Worcester City Council

Measure EU Measure Category		Focus	Progress to date	
Alteration to Traffic Light Phasing in and around Dolday	Traffic Management	Improved flow of traffic around Dolday. Reduction in queuing times.	Completed: County Council data demonstrates reduction in queuing times.	
Alteration to phasing of traffic light systems in Lowesmoor	Traffic Management	Enforcement of existing Traffic regulation order. Improved flow of traffic through Lowesmoor. Reduced congestion.	Completed: Installation of bus gate discourages non-permitted vehicles from accessing city centre via Lowesmoor. Initial data indicates a 90% reduction in non-permitted vehicles using the bus gate and a 74% reduction in non- permitted vehicles travelling along Lowesmoor during restricted peak times.	
Installing electric vehicle charging points	Policy Guidance and Development Control	Increase in availability of EV charging points and corresponding increase in use of electric vehicles	On-going: Installation of EV charging points recommended for inclusion on relevant planning consents. Two EV charging points are available in St Martins Gate City Council car park.	
Travel Planning	Promoting Travel Alternatives	Increase in uptake of personal travel planning services. Change in behaviour towards more sustainable modes of transport.	Due 2016: Worcestershire County Council are developing a personal travel planning service for Worcestershire residents and developers.	
Encourage car sharing	Alternatives to private vehicle use	Increase in number of people car sharing	Worcestershire County Council are launching a new website, Liftshare, which promotes and facilitates Car Share use.	

Lowesmoor pre Traffic Regulation Enforcement

Lowesmoor post Traffic Regulation Enforcement

Local Priorities and Challenges

Congestion and poor accessibility in Worcester are directly linked to air quality. In a small cathedral city with a limited road network we see AQMAs and emerging areas of poor air quality along arterial routes in and out of the city centre where poor accessibility and congestion are daily problems. Solving the issue of accessibility is key to solving the problem of air quality in the city. Currently there is no transport or accessibility strategy that focuses on the city centre itself. The Worcester Urban Area (Steering) sub-group agree that a detailed city centre transport plan or Masterplan,

setting out how the city centre should be developed and accessed for all modes of transport, is key to tackling poor air quality within the central AQMAs and identified areas of poor air quality.

Worcestershire County Council currently has plans to invest in a city centre microsimulation model to enable various interested parties to test alternative options for managing traffic and access within the city centre. The sub-group will actively engage with the development of the city centre transport strategy or Masterplan as it moves forward.

WRS on behalf of WCC continue to monitor existing locations in 2015 to assess any improvements or degradation in NO₂ concentrations. The data gathered will assist in further assessment of areas of poor air quality outside the current AQMA's. It is anticipated a detailed assessment of the Foregate Street/ The Tything/The Butts area, including automatic monitoring, will be completed by end of 2016. Further update on monitoring and action progress will be provided in 2016 Annual Status Report.

How to get involved

There are a number of ways members of the public can help to improve local air quality:

- Walk or cycle around the city centre instead of driving;
- Worcestershire County Council have launched a car sharing website, LiftShare, to help people find others journeying to the same destinations to share journeys and costs, and reduce traffic and emissions. Visit this link for more information: <u>https://worcestershire.liftshare.com/</u>
- General travel planning advice is available on Worcestershire County Council's website (including walking, cycling and bus maps and timetables).

Table of contents

Overview of Air Quality in Our Area	5
Air quality in Worcester City	5
Actions to improve air quality	7
How to get involved	10
Table of contents	11
1 Local Air Quality Management	15
2 Actions to improve air quality	
2.1 Air Quality Management Areas	16
2.2 Progress and Impact of Measures to address Air Quality in Worcester Ci	ty16
2.3 PM _{2.5} – Local Authority Approach to Reducing Emissions and or	
Concentrations	27
3 Air Quality Monitoring Data and Comparison with Air Quality	
Objectives and National Compliance	30
3.1 Summary of Monitoring Undertaken	30
3.1.1 Automatic Monitoring Sites	30
3.1.2 Non-Automatic Monitoring Sites	30
3.2 Individual pollutants	30
3.2.1 Nitrogen Dioxide (NO ₂)	30
3.2.2 Particulate Matter (PM ₁₀)	35
Appendix A: Monitoring Locations	37
Appendix B: Diffusion Tube Results	49
Appendix C: Supporting Technical Information / Air Quality Monitoring	
Data QA/QC	53
Appendix D: Summary of Air Quality Objectives in England	63
Glossary of Terms	64
References	66

List of Tables

Table 2.1	Declared Air Quality Management Areas	13
Table 2.2	Priority actions for Dolday/Bridge Street, Lowesmoor and Rainbow Hill areas	14
Table 2.3	Progress on select measures to improve air quality to 30 th April 2015	16
Table 2.4	Local Transport Plan measures benefitting local air quality progress to 30 th April 2015	23
Table 2.5	Progressed AQAP measures that reduce PM _{2.5}	25
Table 3.1	Summary of measured exceedances and borderline results in 2014	28
Table A.1	Details of Non-Automatic Monitoring Sites	34
Table B.1	NO2 Monthly Diffusion Tube Results - 2014	46
Table B.2	Annual Mean NO ₂ Monitoring Results	48
Table C.1	Annualisation calculations for But2 The Butts, Worcester	51
Table C.2	Annualisation calculations for LR3 London Road traffic sign 572 for A58(City), Worcester	51
Table D.1	Summary of air quality objectives in England	60

List of Figures

Figure. 3.1	Long Term Trend Graph of NO ₂ concentrations at monitoring locations of 3 years or greater	29
Figure 3.2	Long Term Trend Graph of NO ₂ concentrations in Dolday/Bridge Street AQMA	30
Figure 3.3	Long Term Trend Graph of NO ₂ concentrations in Lowesmoor/ Astwood Road AQMA	31
Figure A.1	Map of Dolday/Bridge Street AQMA and The Butts Monitoring Locations	38
Figure A.2	Map of The Tything Monitoring Locations	39
Figure A.3	Map of Foregate Street and Lowesmoor AQMA Monitoring Locations	40
Figure A.4	Map of St Johns AQMA Monitoring Locations	41
Figure A.5	Map of McIntyre Road and Oldbury Road (West Worcester) Monitoring Location	42
Figure A.6	Map of Rainbow Hill AQMA Monitoring Locations	43
Figure A.7	Map of Newtown Road and Whittington Road (East Worcester) Monitoring Locations	44
Figure A.8	Map of London Road and Sidbury Monitoring Locations	45
Figure C.1	Loc. DDASH - Distance from road to relevant exposure calculation	52
Figure C.2	Loc. BrS - Distance from road to relevant exposure calculation	52
Figure C.3	Loc. Tyn2. Distance from road to relevant exposure calculation	53
Figure C.4	Loc. Tyn. Distance from road to relevant exposure calculation	53
Figure C.5	Loc. Fos2. Distance from road to relevant exposure calculation	54
Figure C.6	Loc. Fos. Distance from road to relevant exposure calculation	54
Figure C.7	Loc. Lwm1. Distance from road to relevant exposure calculation	55
Figure C.8	Loc. StJ1. Distance from road to relevant exposure calculation	55
Figure C.9	Loc. StJ3. Distance from road to relevant exposure calculation	56
Figure C.10	Loc. Ast3. Distance from road to relevant exposure calculation	56

Worcester City Council

Figure C.11	Loc. Whr. Distance from road to relevant exposure calculation	57
Figure C.12	Loc. LR1. Distance from road to relevant exposure calculation	57
Figure C.13	Loc. LR2. Distance from road to relevant exposure calculation	58
Figure C.14	Loc. LR3. Distance from road to relevant exposure calculation	58
Figure C.15	Loc. LR4. Distance from road to relevant exposure calculation	59
Figure C.16	Loc. SidFG. Distance from road to relevant exposure calculation	59

1 Local Air Quality Management

This report provides an overview of air quality in Worcester City during 2014. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Worcester City Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM **in England** can be found in Table D.1 in Annex D.

2 Actions to improve air quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

A summary of current AQMAs declared by Worcester City Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at

http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-managementareas.aspx.

AQMA Name	Pollutants and Air Quality Objectives	City / Town	One Line Description	Action Plan
Bridge Street/Dolday			City Centre one way system	Air Quality Action Plan Progress
Lowesmoor/ Rainbow Hill	NO ₂ annual mean	Worcester	A key bus and commuter corridor into City	Report for Worcestershire April 2013-2015
St Johns			Key corridor on west side of river crossing	To be completed by 26 th March 2016

Table 2.1 – Declared Air Quality Management Areas

2.2 Progress and Impact of Measures to address Air Quality in Worcester City

The Action Plan for Worcestershire identified a large number of potential actions for each of the Worcestershire AQMAs. It is recognised that it is not feasible to progress all of the identified actions simultaneously. In 2014 WRS carried out a prioritisation procedure for each AQMA in order to identify "priority actions" to progress first. The priority actions established for Worcester City are outlined in Table 2.2 below. NB no priority actions are shown for St Johns AQMA as the prioritisation process was undertaken prior to the declaration of that AQMA:

AQMA/Area	AQAP Action no.	Action
	5.1.7	Improvement of Signage to avoid AQMA
Dolday /Bridge Street	5.2.2	Freight Quality Partnership
/Bridge Street AQMA	DD3/5.1.1	Alteration to traffic light phasing
	DD5/5.2.1	Bus Quality Partnership
	5.1.1/LRH5	Loading and unloading restrictions during peak times
Lowesmoor	5.1.7	Improvement of signage to avoid AQMA
	5.2.1	Bus Quality Partnership
	5.2.2	Freight Quality Partnership
	5.2.1	Bus Quality Partnership
Rainbow Hill	5.1.1/LRH5	Loading and unloading restrictions during peak times
	5.3.4	Promote Flexible Working Arrangements
	5.1.4	Variable Message Signage

Table 2.2Priority actions for Dolday/Bridge Street, Lowesmoor and RainbowHill areas

In November 2014 Worcestershire County Council produced a technical discussion paper for the Worcester urban area which presented a number of transport-focused options for each area, with the focus on improving air quality. It is apparent from the technical discussion paper that the problem of air quality in the city centre is tied in with farther reaching issues involving local transport strategy and accessibility in Worcester city centre. In light of this the sub-group considers that the progression of one or two of the priority actions as identified above in Table 2.2 would be ineffectual and that the focus should be on securing the inclusion of these, and other actions, in a wider low emission strategy for Worcester city, linked to, or forming part of, a city centre transport strategy or Masterplan. Further information, including a copy of the technical discussion document, is available within the 'Air Quality Action Plan Progress Report for Worcestershire April 2013-2015' via http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx.

WCC has taken forward a number of measures during the current reporting year of 2015 in pursuit of improving local air quality. Details of progressed actions to 30th April 2015 are set out in Table 2.3. Full details on all these and non-progressed or feasible measures can be found in the 'Air Quality Action Plan Progress Report for Worcestershire April 2013-2015' at <u>http://www.worcsregservices.gov.uk/pollution/air-quality/air-quality-action-plan.aspx</u>.

In addition to the AQAP measures there are a number of actions being undertaken by Worcestershire County Council as part of Local Transport Plan that, although not designed to provide specific improvements in AQMA's, will have general air quality benefits in Worcester. These are set out in Table 2.4 below.

Key completed measures for last 12 months to 30th April 2015 are:

- 'Implementation of the Lowesmoor Improvement Scheme' completed 11th January 2015 by Worcestershire County Council. Key Outcomes Enforcement of existing Traffic Regulation Order to reduce traffic and congestion within AQMA. Initial results indicates achieved reductions of 74% in vehicles travelling eastbound out of the city centre during afternoon peak times and 90% reduction in vehicles travelling westwards along Lowesmoor and using the bus gate to access the city centre.
- 'Alteration of traffic light phasing in Dolday/Bridge Street AQMA' completed late 2014 by Worcestershire County Council. Key outcomes – County Council data demonstrates reduction in queuing times.
- 'Variable Message Signage' for car parking availability in city completed in 2014 by Worcestershire County Council. Key outcomes - direct drivers to car

parks with free spaces reducing the number and length of trips drivers make on city centre

 'Availability of air quality information' – completed in 2014 by Worcestershire Regulatory Services. Key outcomes – annual air quality reports to Defra since 2010, plans of AQMA and declarations or revocations, countywide AQAP and update, Steering group minutes made available to view and download from WRS website. Finalised version of future documents will be added as they are produced.

Priorities for 2015/16 for air quality improvements in Worcester City as at 30th April 2015 are:

- Promoting requirement and gaining political agreement for a 'Worcester City centre transport strategy and Masterplan' incorporating a 'Lowering Emissions Strategy'.
- Submitting a 'bid to the Low Emissions Bus Scheme' (LEBS) to retrofit lower Euro standard buses on city centre routes or replace with Ultra Low Emission Vehicles (ULEV). Subject to support of local bus operators a major LEBS bid will be submitted by end of October 2015.
- Supporting proposals for a joint bid between Birmingham City Council and Bromsgrove & Redditch Borough Councils for funding from the Office of Low Emission Vehicles (OLEV) to carry out 'feasibility studies for the installation of a compressed natural gas filling facility' in Worcestershire, and three sites in Birmingham. Although, not specifically applicable to WCC such a facility could have a beneficial impact across the county.
- Completion and adoption of 'Supplementary Planning Document for Air Quality' to enshrine current air quality recommendations in policy.

Table 2.3 - Progress on Select Measures to Improve Air Quality to 30 th Ap	oril 2015
---	-----------

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implemen tation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date
5.1.1/DD 3	Alteration to Traffic Light Phasing in and around Dolday	Traffic Management	Strategic highway improvements, Re-prioritising road space away from cars, inc Access management, Selective vehicle priority, bus priority, high vehicle occupancy lane	Worcest ershire County Council	2014	2014	Improved flow of traffic around Dolday. Reduction in queuing times.	1-2%	Action completed by Worcestershire County Council in 2014. County Council data demonstrates reduction in queuing times.
5.1.1	Alteration to phasing of traffic light systems (Lowesmoor)	Traffic Management	Strategic highway improvements, Re-prioritising road space away from cars, inc Access management, Selective vehicle priority, bus priority, high vehicle occupancy lane	Worcest ershire County Council	2013- 2014	2014-2015	Improved flow of traffic through Lowesmoor. Reduced congestion. Reduced volume of traffic.	5-10%	Implementation of bus gate enforcement went live on 11th January 2015. Vehicles not fitted with appropriate transponder are held at traffic lights for 10 mins discouraging them from using the bus lane to access city centre via Lowesmoor. Initial data indicates a 90% reduction in non-permitted vehicles using the bus gate and a 74% reduction in non-permitted vehicles travelling along Lowesmoor during restricted peak times.
5.1.4	Variable Message Signage (includes traffic info, car park info, bus and rail connection info etc.)	Traffic Management	UTC, Congestion Management, Traffic Reduction	County Council, District Council	2016 onwards	2017 onwards	Increase in number of VMS boards, increased uptake of alternative modes of transport	1-2%	Worcestershire County Council has installed VMS boards to direct drivers to car parks with free spaces in 2014. This has reduced the number of trips being made between car parks as drivers look for spaces. Inclusion of VMS real time travel information boards has been secured as part of development of a new Waitrose on London Road. County Council currently progressing scheme to provide VMS boards in bus stops along major routes in the city to provide real time travel information.
5.1.5/LR H5	Loading and unloading restrictions during peak traffic times (Lowesmoor)	Traffic Management	UTC, Congestion Management, Traffic Reduction	Worcest ershire County Council, District Council	2015- 2016	2018-2019	Introduction and implementation of TRO during peak times. Reduced incidence of loading and unloading during peak times and therefore improved flow/reduced congestion.	5-10%	Identified as priority action following completion of WRS prioritisation matrix. Discussed by Steering Group who agreed action to be investigated further.

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implemen tation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	
5.1.7	Improvement of signage for traffic to avoid AQMA	Traffic Management	UTC, Congestion Management, Traffic Reduction	Worcest ershire County Council	2013	2014-2031	Decrease in traffic flows through AQMA. Decrease in number of strategic journeys through AQMA	5-10%	This action forms part of wider Worcester A4440 improvement works. The A4440 improvement works are currently underway	
5.2.1	Bus Quality Partnership (as part of a City Centre Accessibility Masterplan Strategy and combined Low Emission Strategy) or via Low Emission Bus Scheme bid	Vehicle Fleet Efficiency	Vehicle Retrofitting programmes	Worcest ershire County Council	2015 – LEBS Bid 2016- 2017 For voluntar y BQP if LEBS bid is unsucce ssful	2016-2017 If LEBS bid successful 2018 onwards For voluntary BQP is LEBS bid is unsuccess ful	Elimination of lower Euro standard buses on city centre routes (which Euro Standards to be agreed should political support for such an action be secured) by as yet unknown date. Major conversion of fleet to ULEVs.	5-25%	The Sub-Group has considered a number of potential ideas for bus provision in Worcester City including removal of the bus station and introduction of a City Centre Bus Loop. The Sub Group identified root issue for Worcester City is a lack of a Masterplan for the City Centre. The Group agree that best way forward is to promote and facilitate the development and implementation of a Masterplan for Worcester City with a combined Low Emission Strategy to incorporate provision for bus quality partnerships. Initiation of LEBS bid process Apr 2015. Subject to support of local operators a major LEBS bid will be submitted by end October 2015.	
5.2.2	Freight Quality Partnership (work with sat nav providers)	Traffic Management	UTC, Congestion management, traffic reduction	Worcest ershire County Council	2015	2016 onwards	Significant reduction of strategic freight diverted away from AQMA.	5-25%	Steering Group identified that use of Worcestershire County Council Lorry Route Advisory Map has declined significantly in recent years due to now almost universal use of sat nav systems. Group agree should focus on working with sat nav data providers to ensure that HGVs are routinely routed around AQMAs.	
5.2.4	Railway Enhancements	Transport Planning & Infrastructure	Public transport improvements – interchanges stations and services	Worcest ershire County Council, Network Rail	2013	2018	Completion of new Worcester Parkway rail station. Increased use of Worcester Foregate Street station following refurbishment.	<1%	Refurbishment of Worcester Foregate Street train station has recently taken place and a new Railway Station - to be called Worcester Parkway - has been approved and is scheduled to be completed in 2017.	

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implemen tation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date
5.2.5	Greening Council and Business Fleets	Promoting Low Emission Transport	Public Vehicle Procurement – Prioritising uptake of low emission Vehicles	Worcest ershire County Council, in combina tion with the District Councils	2015- 2016	2016 onwards	Increase in number of Council and business fleet vehicles of higher Euro Standard and/or utilising alternative fuels	<1%	Steering Group supporting proposals for a joint OLEV bid between Birmingham City Council and Bromsgrove & Redditch Borough Councils for funding to carry out feasibility studies for the installation of a compressed natural gas filling facility in Worcestershire, and three sites in Birmingham. Although not specifically applicable to WCC such a facility may offer the opportunity for improvements to other Districts.
5.2.10	Installing electric vehicle charging points	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	Worcest er City Council, Worcest ershire County Council	2013	2014 onwards	Increase in availability of EV charging points and corresponding increase in use of electric vehicles	1.50%	Installation of EV charging points are routinely recommended by WRS for inclusion on relevant planning consents to all LPAs in Worcestershire. Two EV charging points are available in St Martins Gate City Council car park. Worcestershire Regulatory Services is currently working towards formalising air quality recommendations as policy with the various Worcestershire LPAs
5.3.1	Travel Planning	Promoting Travel Alternatives	Personalised Travel Planning	Worcest ershire County Council	2014- 2015	Easter 2015 onwards.	Increase in uptake of personal travel planning services. Change in behaviour towards more sustainable modes of transport.	<1%	Based on success of Choose How You Move campaigns Worcestershire County Council are currently developing the provision of personal travel planning service for roll out across the County. The service will charge developers for the delivery of travel plans at new developments rolling out with the South Worcester Development Plan developments from Easter 2015
5.3.2	Encourage car sharing	Alternatives to private vehicle use	Car & lift sharing schemes	Worcest ershire County Council	2014- 2015	Autumn 2015 onwards.	Increase in number of people car sharing	<1%	Worcestershire County Council is developing a new website, Liftshare, which promotes and facilitates Car Share use. Liftshare is successfully operating in many other parts of the Midlands.
5.3.7	Install secure cycle parking shelters	Promoting Travel Alternatives	Promotion of cycling	Worcest ershire County Council	2015- 2016	2015 onwards	Increase in number of secure cycle parking shelters in City, increase in use of secure cycle parking shelters	<1%	Worcestershire County Council has advised whilst WCC currently has excellent provision of secure cycle parking shelters they are at capacity and more are required. Additional secure cycle parking shelters are being installed in Worcester City Centre as part on on-going and upcoming developments. In 2015 additional cycle parking will be installed as part of the Cattle Market development and options to increase capacity at Worcester Foregate Street rail station are being explored.

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implemen tation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date
5.3.8	Promote and support walking and cycling initiatives in Worcestershire	Promoting Travel Alternatives	Personalised Travel Planning	County Council, District Council, Climate Change Officer	2015- 2016	Easter 2015 onwards	Change in behaviour to more sustainable modes of transport e.g. walking, cycling, public transport	1%	Based on success of Choose How You Move campaigns Worcestershire County Council are currently developing the provision of personal travel planning service for roll out across the County.
5.3.9	Smarter Choices - Choose How You Move marketing initiatives	Promoting Travel Alternatives	Personalised Travel Planning	Worcest ershire County Council, in combina tion with Worcest er City Council.	2002- 2003	2004	Change in behaviour towards more sustainable modes of transport.	<1%	Based on success of Choose How You Move campaigns Worcestershire County Council are currently developing the provision of personal travel planning service for roll out across the County from Easter 2015
5.4.4	Make air quality information more available and accessible	Public Information	Via the Internet	WRS	2013 onwards	2013 onwards	Improved availability of air quality information. More information proactively published on website.	<1%	All LAQM reports to DEFRA from 2010 now available via WRS website along with general air quality information, steering group information and information about the AQMAs.
5.4.5	Raise the profile and increase awareness of air quality within the region	Public Information	Via other mechanisms	Worcest er City Council, Worcest ershire County Council	2013	2014 onwards	Increased awareness at District, County and general public levels of air quality issues across the County	<1%	The inception of the Air Quality Steering Group and on-going liaison with Worcestershire County Council has resulted in increased awareness of air quality issues and what they mean within the district and county councils. Work undertaken at Lowesmoor in Worcester City following the inception of the Lowesmoor "Air Pollution Control Zone" and associated enforcement of existing TROs resulted in local press coverage and a general increase in awareness of air quality issues with the general public.
5.5.1	Produce Air Quality Supplementary Planning Document	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	WRS	2014	2015 onwards	Formally adopted and utilised AQ SPD at all six LPAs across Worcestershire	<1%	Development of SPD for Air Quality started and on-going

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implemen tation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date
5.5.3	Encourage uptake of employer and residential travel plans for major employers and new developments to area	Promoting Travel Alternatives	Other	Worcest ershire County Council, Worcest er City Council	2015- 2016	Easter 2015 onwards.	Increase in uptake of personal travel planning services. Change in behaviour towards more sustainable modes of transport.	<1%	Based on success of Choose How You Move campaigns Worcestershire County Council are currently developing the provision of personal travel planning service for roll out across the County. The service will charge developers for the delivery of travel plans at new developments rolling out with the South Worcester Development Plan developments from Easter 2015
5.5.4	Encourage developers to provide sustainable transport facilities and links serving new developments	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	Worcest er City Council, Worcest ershire County Council	2013	2014 onwards	Greater provision of sustainable transport facilities and links servicing new developments	<1%	Installation of electric vehicle charging points, or EV ready points and provision of secure cycle stores is routinely recommended by WRS through the planning consultation process. In addition Worcestershire County Council are rolling out a personalised travel planning service to new developments from Easter 2015
5.6.3	Air Quality Networks	Policy Guidance and Development Control	Regional Groups Co-ordinating programmes to develop Area wide Strategies to reduce emissions and improve air quality	Worcest er City Council, WRS	2014	2014 onwards	Improved cross boundary working between local authorities in Worcestershire	<1%	WRS represents the air quality interests of the six district authorities across Worcestershire. This has allowed for better management of data, reporting and action planning across the county by allowing a more cohesive approach.
5.6.8	Forge closer links with local health agencies	Policy Guidance and Development Control	Regional Groups Co-ordinating programmes to develop Area wide Strategies to reduce emissions and improve air quality	Worcest er City Council, WRS	2014	2014 onwards	Participation of relevant health agencies in the Worcestershire Air Quality Steering Group	<1%	Relevant health agencies continue to be invited to participate in the Worcestershire Air Quality Steering Group. Following initial interest there has been no representation at the Steering Group to date
5.6.9	Development of a Low Emission Strategy for Worcestershire	Policy Guidance and Development Control	Low Emission Strategy	Worcest ershire County Council and Worcest er City Council	2014 onwards	currently unknown due to infancy of scheme	Formal adoption and implementation of Low Emission Strategy	Currently unknown - dependant on what measures are included in any Low Emission Strategy and if political support for a Low Emission Strategy can be secured.	Worcestershire County Council Highways technical discussion paper received and reviewed. Identified wider transport planning issues with Worcester City centre which are intrinsically linked to air quality. Sub Group support proposal for a Worcester City Centre Masterplan with a combined Low Emission. Work towards promoting such a strategy with the aim of securing political support is in its infancy. In February 2015 air quality issues were promoted at the City Council Congestion Review & Scrutiny Group and the idea of a combined Masterplan and Low Emission Strategy mooted. There was general agreement with this approach.

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implemen tation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date
NAWC1	Develop and implement Worcester City Centre Masterplan and combined Low Emission Strategy	Policy Guidance and Development Control	Low Emission Strategy	Worcest er City Council with Worcest ershire County Council	2014 onwards	Currently unknown due to infancy of scheme	Formal adoption and implementation of City Centre Masterplan and Low Emission Strategy	Currently unknown - will depend on the measures put in place as part of the Low Emission Strategy and wider Masterplan. Estimate emission reduction could be as high as 40%	Sub Group identified root issue for Worcester City is a lack of a Masterplan for the City Centre. The Group agree that best way forward is to promote and facilitate the development and implementation of a Masterplan for Worcester City with a combined Low Emission Strategy to incorporate provision for bus quality partnerships. Work towards promoting such a strategy with the aim of securing political support is in its infancy
LRH6	Number of bus routes and non pull-in stops in AQMA	Transport planning & Infrastructure	Bus route improvements	Worcest ershire County Council	2015	2016	Location of bus stops changed to minimise congestion and traffic flow problems	1-5%	Bus stops temporarily moved out of Lowesmoor onto Lowesmoor Terrace, therefore outside of AQMA. Steering Group involved in on-going discussions about appropriate location of bus stops within the Lowesmoor AQMA.
LRH7	Traffic lights onto Lowesmoor Terrace cause congestion	Traffic Management	UTC, Congestion management, traffic reduction	Worcest ershire County Council	2014	2015	Decreased in non- permitted vehicles along Lowesmoor at restricted times resulting in reduced volume of traffic and reduced congestion.	5-10%	As part of County Council Lowesmoor improvement scheme enforcement of existing TRO restricting access to buses and cycles during afternoon peak hours has been progressed. Vehicles other than buses and cycles are prohibited from travelling outbound along Lowesmoor. This reduces the volume of traffic, and therefore congestion, along Lowesmoor during afternoon peaks, a time which has been noted as being particularly bad for the area.

Table 2.4 – Local Transport Plan measures benefitting local air quality progress to 30th April 2015

Measure	EU Category				Progress to Date			
Introduction of a Journey Time Management System (JTMS) around A4440.	Traffic Management	UTC, Congestion management, traffic reduction	anagement, traffic		2015	Reduction in number of strategic trips through the city centre	1%-5%	JTMS planned as part of wider A4440 improvement works. Will be installed by June 2016
Worcester City Centre Transport Model	Transport planning & Infrastructure	Other	Worcester shire County Council	2014	2015	Development of Worcester City Centre Transport Model	0%	Worcestershire County Council developing a bid for a Worcester City Centre Transport Model to inform development of a Worcester City Centre Masterplan and combined Low Emission Strategy
Installation of noise and pollution bund along A4440 at Whittington	Transport planning & Infrastructure	Other	Worcester shire County Council	2014-2015	2031	Installation of appropriate noise and pollution bund. Improvement in monitoring NO2 levels at properties protected by bund.	1-2%	Funding obtained for installation of bund. Installation of bund confirmed in wider A4440 improvement plans.
Signal improvements along Barbourne Road and The Tything	Traffic Management	UTC, Congestion management, traffic reduction	Worcester shire County Council	2015-2016	2017	Improved flow of traffic along arterial route into city centre. Reduced congestion and queuing time.	currently unknown	Upgrading of signal system incorporated into County Plan and funding available.
Improvement/enh ancement of highway network within vicinity of Shrub Hill rail station.	Traffic Management	UTC, Congestion management, traffic reduction	Worcester shire County Council	medium- term	medium- term	Improved flow of traffic on local network, reduced congestion and queuing time.	currently unknown	Improvement/enhancement work forms part of medium-term plan for County Council

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and or Concentrations

Local Authorities are expected under Chapter 7 of Policy Guidance LAQM.PG(16) to work towards reducing emissions and/or concentrations of pollutant $PM_{2.5}$. There is clear evidence that particulate matter ($PM_{2.5}$) has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

There are no automatic $PM_{2.5}$ monitoring stations currently within Worcestershire and the nearest AURN $PM_{2.5}$ monitoring station is Birmingham Acocks Green site situated approximately 33km north east to Worcester City Council's boundaries.

Therefore, WCC has reviewed Defra's national background maps to identify projected $PM_{2.5}$ concentrations within the Local Authority's boundary in the calendar year for 2014. The average of total $PM_{2.5}$ at 32 locations (centre points of 1km x 1km grids) within Worcester City is 10.77µg/m³ with a minimum of 9.96µg/m³ and a maximum of 12.46µg/m³. This indicates that $PM_{2.5}$ concentrations in Worcester City are well below the annual average EU limit value for $PM_{2.5}$ of $25µg/m^3$ (NB there is no regulatory standard for local authorities with respect to $PM_{2.5}$).

Table 2.1 and A.1 of LAQM.TG16 gives examples of measures that can be implemented to tackle $PM_{2.5}$. The following measures identified within the AQAP as priorities and shown in Table 2.2 above have synergies with the measures identified in LAQM.TG16:

Measure no	AQAP Measure	Measure Category	EU Measure Classification
5.3.1	Travel planning	Traffic Management	UTC, Congestion management, traffic reduction
5.3.9	Smarter Choices – Choose how you Move Marketing Initiatives	Promoting Travel Alternatives	Personalised Travel Planning
5.3.8	Promote and support walking and cycling initiatives in Worcestershire	Promoting Travel Alternatives	Promotion of Cycling
5.3.8	Promote and support walking and cycling initiatives in Worcestershire	Promoting Travel Alternatives	Promotion of Walking
5.2.4	Railway Enhancements	Transport Planning & Infrastructure	Public transport improvements – interchanges stations and services
5.3.7	Install secure cycle parking shelters	Transport Planning & Infrastructure	Cycle network
5.3.2	Encourage Car Sharing	Alternatives to private use	Car & Lift sharing schemes
5.69	Development of a Low Emission Strategy for Worcestershire	Policy Guidance and Development Control	Low Emissions Strategy
5.2.2	Freight Quality Partnership (work with sat nav providers)	Freight and Delivery Management	Route Management Plans/Strategic routing strategy for HGV's
5.2.1	Bus Quality Partnership (as part of a City Centre Accessibility Masterplan Strategy and combined Low Emission Strategy) or via Low Emission Bus Scheme bid	Vehicle Fleet Efficiency	Promoting low emission public transport

Table 2.5 Progressed AQAP measures that reduce PM_{2.5}

At the time of writing this report, the above Policy Guidance is currently at consultation stage and the role for local authorities in reducing emissions of $PM_{2.5}$ is not yet established. Therefore, WCC has not yet determined what additional, if any, measures the Council, in collaboration with other stakeholders, could implement to reduce emissions at this time. It is anticipated the Council will address this issue more fully in 2016.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

Worcester City Council did not operate any automatic (continuous) monitoring sites during 2014. There are no national monitoring sites (e.g. AURN) within Worcestershire.

3.1.2 Non-Automatic Monitoring Sites

WCC undertook non- automatic (passive) monitoring of NO_2 at 35 sites during 2014. Table A.1 in Appendix A shows the details of the sites.

Maps showing the locations of the monitoring sites are provided as Figures A.1 to A.8 in Appendix A. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

3.2 Individual pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

For diffusion tubes, the full 2014 dataset of monthly mean values is provided in Table B.1 Appendix B. Table B.2 compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past 5 years with the air quality objective of $40\mu g/m^3$.

Table 3.1 below provides a summary of measured exceedances in 2014 (annualised where necessary) or borderline locations, whether representative of relevant exposure and within an existing AQMA or not.

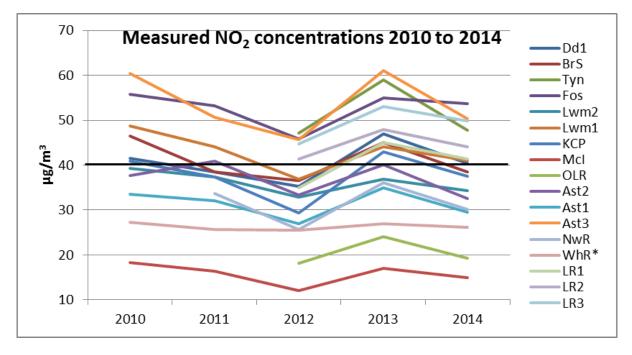

Site ID	Within AQMA Y/N	Bias Adjusted Measurement (µg/m ³)	Adjusted for distance to relevant exposure (µg/m ³)
But 1	Ν	48.74	48.74
But2	Ν	47.36	47.36
DD1	Y – Dolday/Bridge Street	40.39	N/A
DDASH	Y – Dolday/Bridge Street	41.86	37.8
BrS	Y – Dolday/Bridge Street	38.41	32.1
BrS2	Y – Dolday/Bridge Street	48.92	48.92
Tyn3	Ν	38.82	38.82
Tyn2	Ν	50.98	49.8
Tyn	Ν	47.71	46.0
Fos2	Ν	39.05	38.5
Fos	Ν	53.61	48.6
Lwm1	Y – Lowesmoor/Rainbow Hill	41.09	38.1
StJ1	Y – St Johns	46.06	45.0
StJ3	Y – St Johns	41.18	39.8
Ast3	Y – Lowesmoor/Rainbow Hill	50.30	37.6
WhR	Ν	41.30	25.9
LR1	Ν	39.21	35.3
LR2	Ν	44.14	37.0
LR3	Ν	49.88	47.9
LR5	Ν	45.51	45.51
LR4	Ν	39.58	34.0
SidFG	Ν	42.13	35.6

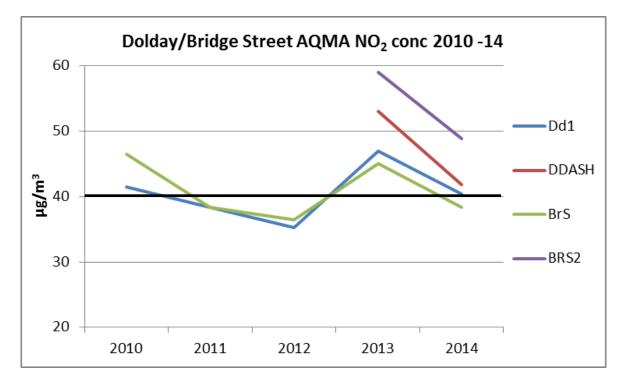
Table 3.1 Summary of measured exceedances and borderline results in 2014

The table above indicate there have been exceedances of the annual average air quality objective (AQO) for NO₂ or concentrations recorded within 5% of the AQO at 22 of the 35 monitoring locations in 2014. However, when taking into consideration the proximity to relevant exposure only 9 locations demonstrate exceedances with 4 more within 5% of the AQO in 2014. Of these, 4 locations are within existing AQMA's, 7 are located in a city centre area (Foregate Street/The Tything/The Butts) currently subject of an on-going Detailed Assessment and 2 locations are in an area, London Road, that will be subject to further assessment in the latter half of 2016.

Figure 3.1 below demonstrates the five year trend for NO₂ concentrations where available.

*WhR - trend shown of concentrations after calculating back to relevant receptor

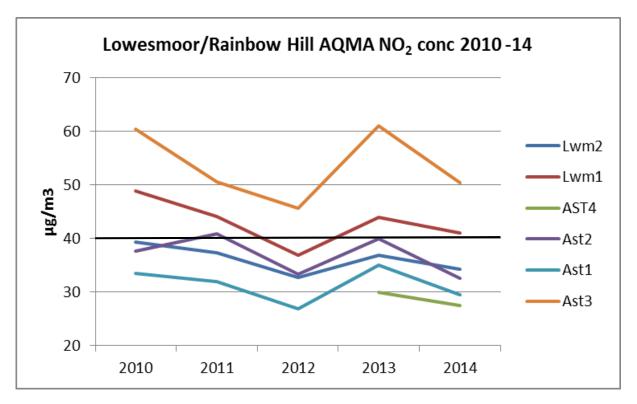
Figure 3.1 demonstrates there has been a general reduction in 2014 from 2013 across the district but overall there is no discernible trend in concentrations.


No annual means greater than $60\mu g/m^3$ have been recorded indicating it is unlikely there have been any exceedances of the 1-hour mean objective at these sites.

Dolday/Bridge Street AQMA

Exceedances have been recorded at two of the four monitoring locations within the AQMA in 2014 although only one of these, Loc. BrS2, is representative of relevant exposure.

Figure 3.2 below demonstrates the five year trend for concentrations within the AQMA.


Figure 3.2 – Long Term Trend Graph of NO₂ concentrations in Dolday/Bridge Street AQMA

Concentrations within the AQMA demonstrate a similar picture to the overall trend across the district, a reduction from 2013 highs but no discernable trend across a longer timeline.

Lowesmoor/Rainbow Hill AQMA

No exceedances have been recorded within this AQMA in 2014, when taking concentrations at nearest releveant receptor into consideration, and the highest recorded concentration of $38.1\mu g/m^3$, Loc. Lwm1, is just within 5% of the AQO. Figure 3.3 below demonstrates the five year trend for bias adjusted measured concentrations (not adjusted for nearest receptor) within the AQMA. Again this demonstrates a reduction from highs recorded in the previous year but no discernable long term trend.

Figure 3.3 – Long Term Trend Graph of NO₂ concentrations in Lowesmoor/Astwood Road AQMA

St Johns AQMA

Two of the five monitoring locations, StJ1 and StJ3, within this new AQMA have measured an exceedance or concentration within 5% of the objective in 2014. Four of the five monitoring locations were only introduced for 2014, thus no direct comparison with previous years can be made. The five year trend data for Loc. KCP is included in Table B.2 in Appendix B. The data demonstrates a reduction from highs recorded in 2013 but no other discernable long term trend at this location.

Foregate Street/The Tything/The Butts, Worcester Study Area

A Detailed Assessment is currently underway of these city centre streets, located to the north of Dolday/Bridge Street AQMA, to determine if declaration of a new AQMA is required. In preparation for the planned assessment eight new monitoring locations were erected for 2014 and retained in 2015. Of the current ten locations within the Study area five demonstrated exceedances and two more measured concentrations within 5% of the AQO in 2014 when proximity to nearest receptors is taken into consideration. Long term trends for the established monitoring positions of Loc.Tyn

and Fos are demonstrated in Figure 3.1 above. The detailed assessment has been delayed due to difficulties in establishing an automatic monitoring site within the study area to provide accurate data. This has now been resolved and monitoring within Foregate Street began in November 2015 and will run to end of June 2016. The assessment will be completed in the latter part of 2016.

London Road/Sidbury, Worcester Area

Two of the six monitoring locations demonstrated exceedances of the AQO in London Road, Worcester in 2014 after taking consideration of proximity to relevant receptors. Two of the monitoring locations were only erected for 2014 and the remaining four were established in 2012-13 thus no long term trend is discernable at this time. However, all six locations demonstrate a reduction in concentrations from 2013 as seen across the district. Results from previous years are included within Table B.2 of Appendix B.

A detailed assessment of the area, including automatic monitoring, was planned for the latter part of 2016 after completion of the Foregate Street monitoring period. However, at the time of writing there is emerging policy guidance from Defra introducing the possibility of fast tracking AQMA declarations. Thus, a decision on whether detailed assessment is required, or not, will be undertaken following the publication and consideration of new policy guidance and monitoring evidence later in 2016.

3.2.2 Particulate Matter (PM₁₀)

Worcester City Council did not undertake any monitoring for PM_{10} within the local authority boundary and have not identified any new specific sources of particulates at this time.

Appendices

Appendix A:	Monitoring Locations – Details and Maps
Appendix B:	Tables: Full Monthly NO ₂ Diffusion Tube Results for 2014 Annual Monitoring Results (5 Years)
Appendix C:	Supporting Technical Information/QA-QC for Air Quality Monitoring Data
Appendix D:	Summary of Air Quality Objectives in England

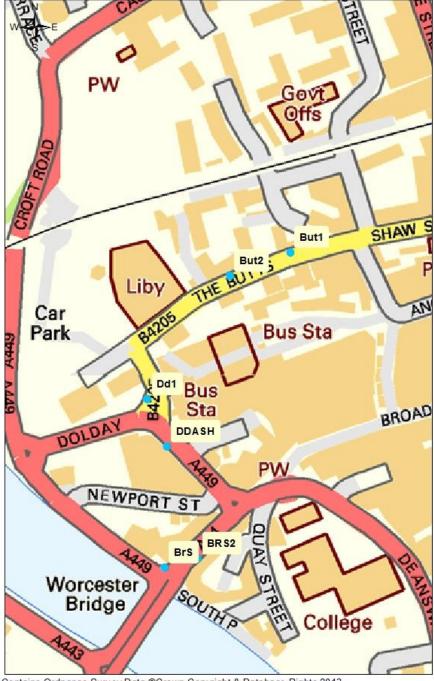
Appendix A: Monitoring Locations

Table A.1 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?
But1	Magdala Court, The Butts	Roadside	384776	255107	NO ₂	N	0m	1.15m	N
But2	Magdala Court, The Butts	Roadside	384724	255086	NO ₂	Ν	0m	1.67m	Ν
Dd1	Ambirak, Dolday 1 opposite bus station (WR1 3PL)	Roadside	384652	254986	NO ₂	Y	N/A	2.18m	N
DDASH	Dolday unnumbered lampost opp All Saints House	Roadside	384682	254924	NO ₂	Y	2m	2.33m	Ν
BrS	Bridge Street lamppost outside John Gwen House	Kerbside	384666	254818	NO ₂	Y	2m	0.66	Ν
BRS2	Bridge Street Street Sign Opposite John Gwyne House	Roadside	384695	254840	NO ₂	Y	0.25m	1.96m	Ν
Tyn3	No. 26 Upper Tything (LP opp KwikFit)	Roadside	384679	255998	NO ₂	N	0.1m	2m	Ν
Tyn2	Lamp & Flag PH Upper Tything (LP) 934	Roadside	384767	255606	NO ₂	Ν	FF 1.29m	2.28m	Ν
Tyn	925 - HAMMERCHILDS, Castle Street/The Tything	Roadside	384833	255461	NO ₂	Ν	FF 1.29m	1.63m	Ν
Fos2	Hewitt Recruitment, 35 Foregate Street (downpipe)	Roadside	384866	255367	NO ₂	Ν	FF 1.36m	3.20m	Ν

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?
Fos3	Café Mela, 22 Foregate Street (downpipe)	Roadside	384899	255329	NO ₂	N	FF 1.03m	2.21m	N
Fos	Foregate Street at junction with Shaw Street (WR1 3QQ)	Kerbside	384941	255140	NO ₂	Ν	FF 1.44m	1.0m	Ν
Crs1	My Coffee, 29 The Cross (downpipe)	Roadside	384967	255012	NO ₂	N	FF 1.33m	3.35m	Ν
Swth1	Scope shop, St. Swithin's Street (downpipe	Roadside	385013	254987	NO ₂	Ν	FF 1.33m	2.06m	Ν
Lwm2	Lowesmoor 2 Town End. Adj private shop	Roadside	385164	255134	NO ₂	Y	FF 1.0m	1.86m	Ν
Lwm1	Lowesmoor 1 Rainbow Hill End outside 4 Seasons	Roadside	385268	255191	NO ₂	Y	FF 1.0m	1.43m	Ν
Stj1	Scott of Tattoo, 1A St. Johns (downpipe)	Roadside	384137	254510	NO ₂	N	FF 1.48m	2.7m	Ν
Brm2	10 Bromyard Road (downpipe)	Urban Background	383967	254481	NO ₂	N	0m		Ν
КСР	King Charles Place outside bakery Lampost 5372 (WR2 5AJ)	Roadside	384016	254399	NO ₂	Ν	0.25m	2.2m	Ν
Stj2	The Fortune House, 65 St. Johns (downpipe)	Roadside	384013	254356	NO ₂	N	FF 1.53m	2.22m	Ν
Stj3	The Bell, 35 St. Johns (downpipe)	Roadside	384046	254424	NO ₂	N	FF 1.53m	2.05m	Ν
McI	McIntyre Road lamppost outside last house before cemetary	Urban Background	383454	254606	NO ₂	Ν	4.5m	1.24m	Ν
OLR	Oldbury Road junction	Roadside	383908	255353	NO ₂	N	17m	2.22m	Ν

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?
	with Henwick opp Co op								
AST4	246 Astwood Road	Roadside	386097	256565	NO ₂	Ν	0m	9.85m	Ν
Ast2	Astwood Road 2 lamppost between Green Lane/Church St	Roadside	385990	256365	NO ₂	Y	4m	1.4m	Ν
Ast1	Astwood Road 1 lampost 125 at cemetary at junction New Chequers/Tintern	Roadside	386064	256518	NO ₂	N	2m	1.53m	Ν
Ast3	Astwood Road 3 Rainbow Hill (WR3 8EU)	Roadside	385764	255968	NO ₂	Y	6.62m	1.68m	Ν
NwR	Newtown Road 1 lamppost (7570) in hedgeline after bus stop prior to hospital roundabout junction of B4636 and B4638 (WR5 1SL)	Roadside	387867	254970	NO ₂	Y	3.38m	2.48m	N
WhR	Whittington Road lamppost 12449 in layby LHS	Roadside	387512	252845	NO ₂	N	20m	1.25m	Ν
LR1	London Road Lampost 6569 by Bargain Booze (WR5 1EY)	Roadside	385636	254158	NO ₂	N	2.9m	1.63m	Ν
LR2	London Road Lampost 6561 by Royal Court (WR5 2DL)	Roadside	385428	254238	NO ₂	N	3m	1.45m	N
LR3	London Road traffic	Roadside	385357	254272	NO ₂	Ν	0.5m	1.77m	Ν


Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?
	sign 572 for A58(City) (WR5 2DL)								
LR5	London Road Bus stop SL6554 opp Bath Road (WR1 2HY)	Roadside	385325	254329	NO ₂	N	0.25m	1.45m	Ν
LR4	London Road SL6565 adj No 61 (WR5 2DU)	Roadside	385525	254219	NO ₂	N	3.1m	1.86m	Ν
SIDFG	Sidbury Street Sign outside Fisher German Estate Agents (WR1 2NT)	Roadside	385146	254474	NO ₂	N	FF 3.94m	2.30m	Ν

(3) 0 if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property). FF indicates distance estimated to first floor receptors where applicable

(4) N/A if not applicable.

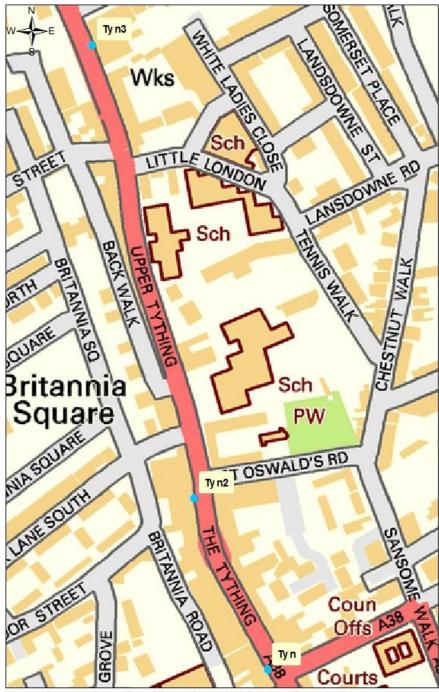
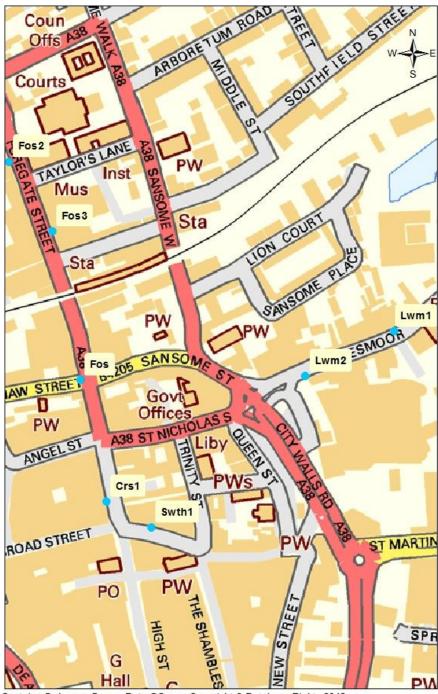
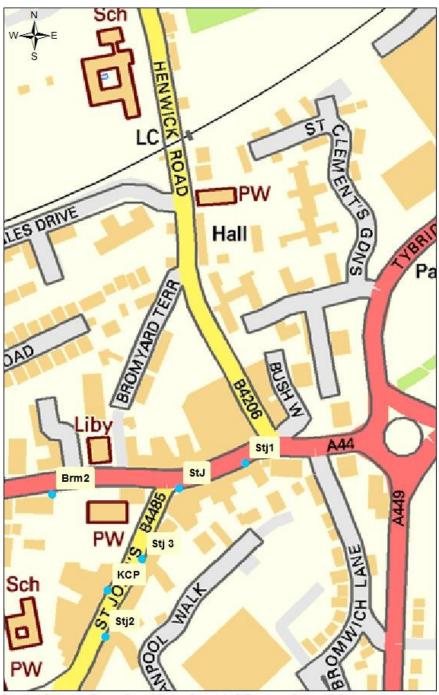
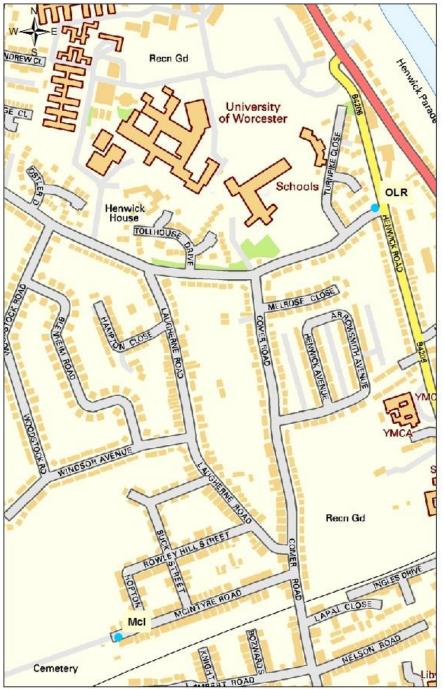
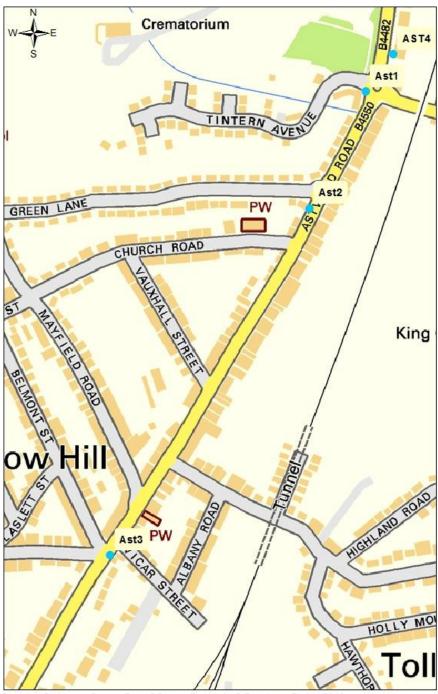

Maps of Monitoring Locations

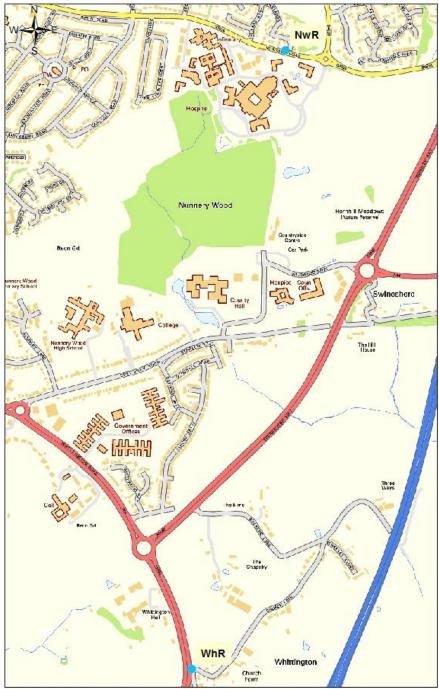
Figure A.1 – Dolday/Bridge Street AQMA and The Butts Monitoring Locations

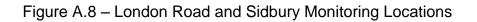

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013


Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013



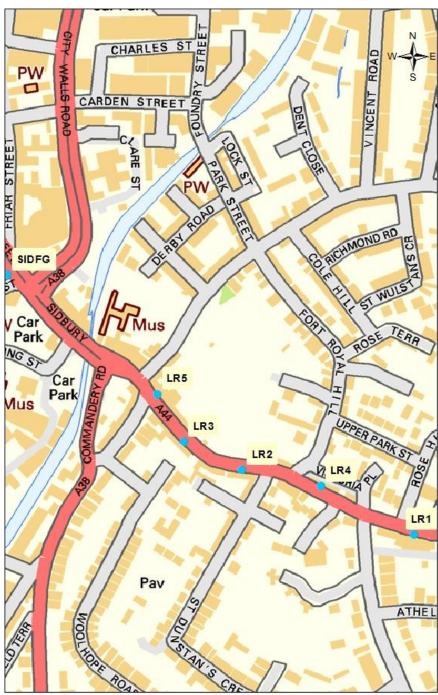

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

Figure A.7 – Newtown Road and Whittington Road (East Worcester) Monitoring Locations

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

Contains Ordnance Survey Data ©Crown Copyright & Database Rights 2013

Appendix B: Diffusion Tube Results

Table B.1 – NO2 Monthly Diffusion Tube Results - 2014

						NO ₂ N	lean Co	oncentr	ations ((µg/m³)				
													Annu	al Mean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted
But1	40.88	43.72	69.59	60.32	36.98	57.87	60.35	47.31	68.59	54.58	58.95	58.04	54.76	48.74
But2	54.60	44.32	68.13	61.47						59.82	59.40	54.41	57.45	51.13
Dd1	41.74		51.67	50.29	45.63		45.01	33.94	50.31	43.56	46.89	44.79	45.38	40.39
DDASH	41.80	41.38	51.48		54.45	39.23	43.82	42.49	48.62		52.92	54.12	47.03	41.86
BrS	41.86	23.67	50.46	43.61	46.43	45.46	44.95	34.28	55.25	37.78	52.69	41.45	43.16	38.41
BrS2		45.03	66.32	46.57	59.83		54.76	41.30	62.46	53.08	63.30	56.96	54.96	48.92
Tyn3	54.29	40.94	54.33	46.82	45.57	40.48	41.86	30.03	46.95	39.24		39.29	43.62	38.82
Tyn2	67.61	50.64	64.99	61.34	60.00	49.73	48.40	48.16	50.41	63.36	59.76	63.00	57.28	50.98
Tyn	63.93	49.99	60.75	53.31	58.91	52.34	52.92	53.60	27.54	55.27	53.64	61.14	53.61	47.71
Fos2	54.96	41.65	54.03	45.60	44.08	35.18	34.73	36.94	37.22	43.79	54.05	44.34	43.88	39.05
Fos3		36.80		44.38	37.90	38.11	33.36	25.44	42.31	41.17	47.39	33.40	38.02	33.84
Fos	55.37	50.80	75.28	62.76	67.44	59.45	59.58	51.78	61.23	56.21	70.01	52.89	60.23	53.61
Crs1	46.92	46.06	53.24	42.33	36.52	26.26	31.81	37.17	39.64	38.89	54.32	48.91	41.84	37.24
Swth1		31.79	42.52	33.01	24.38	30.91	28.36	24.14		26.42	49.16	34.97	32.57	28.98
Lwm2	43.63	37.45	47.85	39.63	33.09	31.28	31.93	26.23	44.04	37.09	51.15	39.43	38.57	34.32
Lwm1	42.53		57.42	29.99	45.28	46.20	52.27	42.32	51.30	36.39	55.91	48.27	46.17	41.09
StJ1	42.22	69.18			51.09	46.02	42.89	44.72	56.66	64.08	50.24	50.39	51.75	46.06
Brm	51.91	47.14	45.50	36.45	29.49	27.77	14.85	28.61	34.38	42.62	44.01	44.01	37.23	33.13
KCP	44.16	41.23	43.80	45.06	35.45	39.83	40.25	32.22	48.06	48.22	44.44	42.23	42.08	37.45
StJ2		34.63	44.18	37.40	24.32		31.79	23.85	41.45	41.23	47.27	31.73	35.78	31.85
StJ3	51.91	42.02	52.63	49.69	43.52	41.73	39.70		53.49	50.49	47.41	36.38	46.27	41.18
McI	22.82	19.13	20.84	17.63	11.07	11.00	9.88	8.49	16.14	18.31	30.30	16.52	16.84	14.99
OLR	25.95	17.55	27.61	23.54	16.61	12.38	28.17	11.47	23.70	22.92	29.25	19.49	21.55	19.18
Ast4	38.45	34.18	35.44	30.76	24.36	23.39	24.51	22.17	33.06	34.17	39.93	30.01	30.87	27.47
Ast2	31.60		43.21	41.18	34.16	31.73	32.89	29.10	45.16	40.18	35.96		36.52	32.50

		NO ₂ Mean Concentrations (μg/m ³)												
													Annu	al Mean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted
Ast1	39.27	26.34	42.03	36.09	26.45	29.58	24.20	26.00	36.09	34.70	40.99	35.09	33.07	29.43
Ast3	66.18	56.84	66.94	65.79	52.14	55.50	50.81	43.35	51.72	61.69	58.39	49.09	56.54	50.32
NwR	37.95	36.32	42.09	49.22	29.87	23.20	25.98	27.59	38.09	31.66	34.28	29.58	33.82	30.10
WhR	55.68	47.76	51.54			41.35	31.49		42.63	50.79	54.65	41.76	46.40	41.30
LR1	48.95	45.23	52.61	41.18	43.00	40.11		35.62		44.49		45.34	44.06	39.21
LR2	57.57	51.71	54.31	56.26	52.96	49.63	39.01	44.97	41.02	52.77		45.39	49.60	44.14
LR3	62.91	52.56		53.71		46.20	40.80					45.96	50.36	44.82
LR5	54.48	40.49	62.11	59.81	46.28	53.68	52.94	38.01	59.19	44.61	63.66	38.31	51.13	45.51
LR4	43.67	36.72	55.44	46.28	44.43	46.26		34.20	48.04	44.49	49.57	40.08	44.47	39.58
SidFG	50.71			51.10	50.10	45.12	48.48	40.58	44.74	43.21	52.01		47.34	42.13

(1) See Appendix C for details on bias adjustment

Table B.2 – Annual Mean NO2 Monitoring Results

			Valid Data	Valid Data	NO ₂	Annual Mea	an Concent	ration (µg/	m ³) ⁽³⁾
Site ID	Site Type	Monitoring Type	Capture for Monitoring Period (%) ⁽¹⁾	Capture 2014 (%) ⁽²⁾	2010	2011	2012	2013	2014
But1	Roadside	Diffusion Tube	100	100	-	-	-	-	48.74
But2	Roadside	Diffusion Tube	58	58	-	-	-	-	47.36
Dd1	Roadside	Diffusion Tube	83	83	41.5	38.4	35.2	47	40.39
DDASH	Roadside	Diffusion Tube	83	83	-	-	-	53	41.86
BrS	Kerbside	Diffusion Tube	100	100	46.5	38.4	36.5	45	38.41
BRS2	Roadside	Diffusion Tube	83	83	-	-	-	59	48.92
Tyn3	Roadside	Diffusion Tube	92	92	-	-	-	-	38.82
Tyn2	Roadside	Diffusion Tube	100	100	-	-	-	-	50.98
Tyn	Roadside	Diffusion Tube	100	100	-	-	47.2	59	47.71
Fos2	Roadside	Diffusion Tube	100	100	-	-	-	-	39.05
Fos3	Roadside	Diffusion Tube	83	83	-	-	-	-	33.84
Fos	Kerbside	Diffusion Tube	100	100	55.7	53.2	45.9	55	53.61
Crs1	Roadside	Diffusion Tube	100	100	-	-	-	-	37.24
Swth1	Roadside	Diffusion Tube	83	83	-	-	-	-	28.98
Lwm2	Roadside	Diffusion Tube	100	100	39.3	37.4	32.8	36.8	34.32
Lwm1	Roadside	Diffusion Tube	92	92	48.8	44.1	36.9	44	41.09
Stj1	Roadside	Diffusion Tube	83	83	-	-	-	-	46.06
Brm2	Urban Background	Diffusion Tube	100	100	-	-	-	-	33.13
KCP	Roadside	Diffusion Tube	100	100	40.9	37.4	29.4	43	37.45
Stj2	Roadside	Diffusion Tube	83	83	-	-	-	-	31.85
Stj3	Roadside	Diffusion Tube	92	92	-	-	-	-	41.18
McI	Urban Background	Diffusion Tube	100	100	18.3	16.4	12.1	17	14.99
OLR	Roadside	Diffusion Tube	100	100	-	-	18.2	24	19.18
AST4	Roadside	Diffusion Tube	100	100	-	-	-	30	27.47
Ast2	Roadside	Diffusion Tube	83	83	37.6	40.8	33.4	40	32.50
Ast1	Roadside	Diffusion Tube	100	100	33.5	32	26.9	35	29.43
Ast3	Roadside	Diffusion Tube	100	100	60.4	50.6	45.7	61	50.32

			Valid Data	Valid Data	NO ₂	Annual Mea	an Concent	ncentration (µg/m ³) ⁽³⁾			
Site ID	Site Type	Monitoring Type	Capture for Monitoring Period (%) ⁽¹⁾	Capture 2014 (%) ⁽²⁾	2010	2011	2012	2013	2014		
NwR	Roadside	Diffusion Tube	100	100	-	33.6	25.7	36	30.10		
WhR	Roadside	Diffusion Tube	75	75	44	39.9	39.5	43	41.30		
LR1	Roadside	Diffusion Tube	75	75	-	-	34.9	45	41.30		
LR2	Roadside	Diffusion Tube	92	92	-	-	41.3	48	44.14		
LR3	Roadside	Diffusion Tube	50	50	-	-	44.7	53	49.88		
LR5	Roadside	Diffusion Tube	100	100	-	-	-	-	45.51		
LR4	Roadside	Diffusion Tube	92	92	-	-	-	-	39.58		
SIDFG	Roadside	Diffusion Tube	75	75	-	-	-	50	42.13		

Notes: Exceedances of the NO₂ annual mean objective of 40µg/m3 are shown in **bold**.

NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG (16) if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

Sources of pollution

Worcester City Council have not identified any new or significant changes to sources as described in Chapter 7, section1 of Technical Guidance LAQM.TG(16).

Diffusion Tube Bias Adjustment Factors

The following UKAS accredited company provides Redditch Borough Council with nitrogen dioxide diffusion tubes and analysis:

Somerset Scientific Services, The Crescent County Hall Taunton TA1 4DY 0300 123 2224 somersetscientific@somerset.gov.uk

The 20% Triethanolamine (TEA) / De-ionised Water preparation method is used.

The bias adjustment factor applied to the results in 2014 was 0.89 (Spreadsheet Version No. 03/15) which were derived from the national studies.

QA/QC of Diffusion Tube Monitoring

Under the WASP Scheme Somerset Scientific Services performed 100% satisfactory for all periods in 2014. Tube precision was generally 'Good' throughout 2014.

Short-term to Long-term Data Adjustment

Annualisation calculation for But2 and LR3 are shown below in Tables C.1 and C.2.

Site	Site Type	Annual Mean	Period Mean	Ratio
Birmingham Acocks Green	Background Urban	43.09658157	44.06674634	0.977984198
Birmingham Tyburn	Background Urban	29.84605318	33.98467434	0.878220956
Walsall Woodlands	Background Urban	25.2599895	27.37511899	0.922735332
			Average	0.926313495
			But2 result	51.13
			But2	47.36
			annualised	

 Table C.1
 Annualisation calculations for But2 - The Butts, Worcester

Table C.2Annualisation calculations for LR3 - London Road traffic sign 572for A58(City), Worcester

Site	Site Type	Annual Mean	Period Mean	Ratio
Birmingham Acocks Green	Background Urban	43.09658157	34.61530565	1.245015197
Birmingham Tyburn	Background Urban	29.84605318	29.72386348	1.004110828
Walsall Woodlands	Background Urban	25.2599895	23.18999664	1.089262319
			Average	1.112796114
			LR3 result	44.82
			LR3	49.88
			annualised	

Estimates of concentrations at the nearest receptor

If an exceedance is measured at a monitoring site (or close to the air quality objective) which is not representative of public exposure, the procedure specified in Technical Guidance LAQM.TG(16) has been used to estimate the concentration at the nearest receptor where applicable. The results are presented in Figures C.1 to C.16 below.

Figure C.1 – Loc. DDASH - Distance from road to relevant exposure calculation

("recept	ulator allows you to predict the annual mean NO_2 concentration for a lo or") that is close to a monitoring site, but nearer or further the kerb that The next sheet shows your results on a graph.		AirQ	uality				
	Enter d	ata into the y	ellow cell	<u>s</u>				
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	2.33	metres				
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	4.33	metres				
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³				
Step 4	What is your measured annual mean NO $_2$ concentration (in μ g/m ³)?	(Note 2)	41.86	μg/m ³				
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	37.8	μg/m ³				
Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m w hen the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.								
	neasurement and the background must be for the same year. The background concentration could com www.airquality.co.uk, or alternatively from a nearby monitor in a background location.	e from the nation	al maps					
	alculator follow s the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater unc onfidence can be placed in results w here the distance betw een the monitor and the receptor is small th							
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Conta	act:benmarner@aqc	onsultants.co.u	k				

Figure C.2 – Loc. BrS - Distance from road to relevant exposure calculation

	Enter c	lata into the	<u>yellow cell</u>	<u>s</u>						
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	0.6	metres						
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	2.6	metres						
Step 3	What is the local annual mean background NO $_2$ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³						
Step 4	What is your measured annual mean NO $_2$ concentration (in $\mu\text{g/m}^3)?$	(Note 2)	38.41	μg/m ³						
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	32.1	μg/m ³						
http://laqm2.d assumes that value of 0.1m your prediction and the recept recommended recommended	e 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at ://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and sumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a ue of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make ir prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor It he receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is ommended that the receptor and monitor should be within 10m of each other.									
	easurement and the background must be for the same year. The background concentration could con v w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.		nai maps							
	alculator follow s the procedure set out in Box 2.3 of LAQMTG(09). The results will have a greater un onfidence can be placed in results where the distance betw een the monitor and the receptor is small the second									
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Cont	act:benmarner@aq	consultants.co.u	ık						

Figure C.3 – Loc. Tyn2. Distance from road to relevant exposure calculation

("recept	culator allows you to predict the annual mean NO ₂ concentration for a lo or") that is close to a monitoring site, but nearer or further the kerb than The next sheet shows your results on a graph.		AirQ	uality
	Enter d	<u>ata into the y</u>	ellow cell	<u>s</u>
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	2.28	metres
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	2.61	metres
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³
Step 4	What is your measured annual mean NO $_2$ concentration (in μ g/m ³)?	(Note 2)	50.98	μg/m ³
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	49.8	μg/m ³
http://laqm2. assumes that value of 0.10 your predict and the rece recommended	me cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured hori ti the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less in when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location on. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the rece ptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb that the receptor and monitor should be within 20m of each other. When your receptor is closer to the ed that the receptor and monitor should be within 10m of each other.	than 50m (In prac for w hich you w eptor. The closer erb than your mo	ctice, using a ish to make the monitor hitor, it is	
	measurement and the background must be for the same year. The background concentration could com w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.	e from the nation	al maps	
	calculator follow s the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater unc confidence can be placed in results w here the distance betw een the monitor and the receptor is small th			
b	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Conta	act:benmarner@aqc	onsultants.co.u	k

Figure C.4 – Loc. Tyn. Distance from road to relevant exposure calculation

	Enter d	data into the yellow cells			
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.63	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	2.07	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μ g /m ³	
Step 4	What is your measured annual mean NO_2 concentration (in μ g/m ³)?	(Note 2)	47.71	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	46.0	μ g /m³	
http://laqm2.d assumes that value of 0.1m your predictic and the recep recommended recommended	Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m w hen the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for w hich you w ish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be w ithin 10m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be w ithin 10m of each other.				
	bublished at w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.				
	Note 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured tata. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Cont	act:benmarner@aq	consultants.co.u	k	

Figure C.5 – Loc. Fos2. Distance from road to relevant exposure calculation

This calculator allows you to predict the annual mean NO ₂ concentration for a location ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.						
	Enter da	ata into the y	ellow cell	<u>s</u>		
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	3.2	metres		
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	3.48	metres		
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³		
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	(Note 2)	39.05	μg/m ³		
Result	The predicted annual mean NO_2 concentration (in $\mu g/m^3$) at your receptor	(Note 3)	38.5	μg/m ³		
http://laqm2.o assumes tha value of 0.1r your predicti and the rece recommende	Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.					
	measurement and the background must be for the same year. The background concentration could com w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.	e from the nation	al maps			
	calculator follow s the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater unc confidence can be placed in results w here the distance betw een the monitor and the receptor is small th	•				
	Issue 4: 25/01/11. Created by Dr Ben Marner, Approved by Prof Duncan Laxen. Conta	ict:benmarner@aqc	onsultants.co.u	k		

Figure C.6 – Loc. Fos. Distance from road to relevant exposure calculation

	Enter d	lata into the yellow cells			
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	1.9	metres	
Step 3	What is the local annual mean background NO_2 concentration (in $\mu\text{g/m}^3)?$	(Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO_2 concentration (in μ g/m ³)?	(Note 2)	53.61	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	48.6	μg/m ³	
http://laqm2.d assumes that value of 0.1m your predictic and the recep recommended recommended	Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	Note 2: The measurement and the background must be for the same year. The background concentration could come from the national maps published at w w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.				
	Note 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured lata. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Contr	act:benmarner@aq	consultants.co.u	k	

Figure C.7 – Loc. Lwm1. Distance from road to relevant exposure calculation

("recept	culator allows you to predict the annual mean NO ₂ concentration for a lo or") that is close to a monitoring site, but nearer or further the kerb thar The next sheet shows your results on a graph.		AirQ	uality	
	Enter da	<u>ata into the y</u>	ellow cell	<u>s</u>	
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.43	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	2.43	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO $_2$ concentration (in μ g/m ³)?	(Note 2)	41.09	μ g /m ³	
Result	The predicted annual mean NO ₂ concentration (in μ g/m ³) at your receptor	(Note 3)	38.1	μg/m ³	
Note 1: in some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 20m of each other.					
	measurement and the background must be for the same year. The background concentration could com w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.	e from the nation	al maps		
	calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater unc confidence can be placed in results w here the distance betw een the monitor and the receptor is small th	•			
b	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Conta	act:benmarner@aqc	onsultants.co.u	ik	

Figure C.8 – Loc. StJ1. Distance from road to relevant exposure calculation

	Enter data into the yellow cells			<u>s</u>	
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	2.7	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	3.08	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μ g /m³	
Step 4	What is your measured annual mean NO $_2$ concentration (in $\mu\text{g/m}^3)?$	(Note 2)	46.06	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	45.0	μg/m ³	
http://laqm2.d assumes that value of 0.1m your prediction and the recept recommended recommended	Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs//Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	ublished at w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.				
	ote 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured ata. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Cont	act:benmarner@aq	consultants.co.u	k	

Figure C.9 – Loc. StJ3. Distance from road to relevant exposure calculation

This calculator allows you to predict the annual mean NO ₂ concentration for a location ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.				
	Enter da	ata into the y	ellow cell	<u>s</u>
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	2.05	metres
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	2.56	metres
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³
Step 4	What is your measured annual mean NO_2 concentration (in μ g/m ³)?	(Note 2)	41.18	μg/m ³
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	39.8	μg/m ³
Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	neasurement and the background must be for the same year. The background concentration could come w w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.	e from the nation	al maps	
	alculator follows the procedure set out in Box 2.3 of LAQMTG(09). The results will have a greater unco onfidence can be placed in results where the distance between the monitor and the receptor is small that			
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Contac	ct:benmarner@aqc	onsultants.co.u	k

Figure C.10 – Loc. Ast3. Distance from road to relevant exposure calculation

	Enter data into the yellow cells			<u>s</u>	
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.68	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	8.3	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO $_2$ concentration (in $\mu\text{g/m}^3)?$	(Note 2)	50.32	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	37.6	μg/m ³	
Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (in practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.					
published at	published at www.airquality.co.uk, or alternatively from a nearby monitor in a background location.				
	Note 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Cont	act:benmarner@aq	consultants.co.u	k	

Figure C.11 – Loc. Whr. Distance from road to relevant exposure calculation

This calculator allows you to predict the annual mean NO ₂ concentration for a location ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.				
	Enter data into the	yellow cells	<u>8</u>	
Step 1	How far from the KERB was your measurement made (in metres)? (Note 1)	1.25	metres	
Step 2	How far from the KERB is your receptor (in metres)? (Note 1)	20	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)? (Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO ₂ concentration (in μg/m ³)? (Note 2)	41.3	μg/m ³	
Result	The predicted annual mean NO ₂ concentration (in μg/m ³) at your receptor (Note 3)	25.9	μg/m ³	
Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor is and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	measurement and the background must be for the same year. The background concentration could come from the nati t w w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.	onal maps		
	calculator follows the procedure set out in Box 2.3 of LAQMTG(09). The results will have a greater uncertainty than t confidence can be placed in results where the distance between the monitor and the receptor is small than where it is			
	lssue 4: 25/01/11. Created by Dr Ben Marner, Approved by Prof Duncan Laxen. Contact: benmarner@a	iqconsultants.co.ul	<	

Figure C.12 – Loc. LR1. Distance from road to relevant exposure calculation

	Enter d	Enter data into the yellow cells			
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.63	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	4.52	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO $_2$ concentration (in $\mu\text{g/m}^3)?$	(Note 2)	41.3	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	35.3	μg/m ³	
Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (ln practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.					
	published at w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.				
	Note 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
	lssue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Cont	act:benmarner@aq	consultants.co.ul	k	

Figure C.13 – Loc. LR2. Distance from road to relevant exposure calculation

This calculator allows you to predict the annual mean NO ₂ concentration for a location ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.				
	Enter da	ata into the y	ellow cell	<u>s</u>
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.45	metres
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	4.45	metres
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	(Note 2)	44.14	μg/m ³
Result	The predicted annual mean NO $_2$ concentration (in μ g/m ³) at your receptor	(Note 3)	37.0	μg/m ³
Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 20m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	measurement and the background must be for the same year. The background concentration could come w w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.	from the nation	al maps	
	calculator follows the procedure set out in Box 2.3 of LAQMTG(09). The results will have a greater unce confidence can be placed in results where the distance between the monitor and the receptor is small that			
	lssue 4: 25/0∜11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Contac	t:benmarner@aqc	onsultants.co.u	k

Figure C.14 – Loc. LR3. Distance from road to relevant exposure calculation

	Enter d	Enter data into the yellow cells			
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.77	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	2.27	metres	
Step 3	What is the local annual mean background NO ₂ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	(Note 2)	49.88	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	47.9	μg/m ³	
http://laqm2.d assumes that value of 0.1m your prediction and the recept recommended recommended	Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m w hen the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you w ish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	Note 2: The measurement and the background must be for the same year. The background concentration could come from the national maps published at w w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.				
	Note 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
	Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Contr	act:benmarner@aq	consultants.co.u	k	

Figure C.15 – Loc. LR4. Distance from road to relevant exposure calculation

This calculator allows you to predict the annual mean NO ₂ concentration for a location $\bigcirc Air Quality$ ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.					
	Enter d	lata into the y	ellow cell	<u>s</u>	
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	1.86	metres	
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	4.96	metres	
Step 3	What is the local annual mean background NO_2 concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³	
Step 4	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	(Note 2)	39.58	μg/m ³	
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	34.0	μg/m ³	
http://laqm2.d assumes tha value of 0.1r your predicti and the rece recommender recommender	Note 1: In some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 20m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other.				
	measurement and the background must be for the same year. The background concentration could corr w w w .airquality.co.uk, or alternatively from a nearby monitor in a background location.	ne from the nation	al maps		
	calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater unc confidence can be placed in results where the distance between the monitor and the receptor is small the				
	Issue 4:25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Conta	act: benmarner@aqc	onsultants.co.u	ık	

Figure C.16 – Loc. SidFG. Distance from road to relevant exposure calculation

	Enter d	data into the yellow cells		
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	2.3	metres
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	6.24	metres
Step 3	What is the local annual mean background NO $_2$ concentration (in μ g/m ³)?	(Note 2)	14.99	μg/m ³
Step 4	What is your measured annual mean NO_2 concentration (in $\mu\text{g/m}^3)?$	(Note 2)	42.13	μ g /m ³
Result	The predicted annual mean NO_2 concentration (in μ g/m ³) at your receptor	(Note 3)	35.6	μg/m ³
Note 1: h some cases the term "kerb" may be taken to be the edge of the trafficked road - see the FAQ at http://laqm2.defra.gov.uk/FAQs/Monitoring/Location/index.htm for further details. Distances should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 20m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other. Note 2: The measurement and the background must be for the same year. The background concentration could come from the national maps				
published at w w w.airquality.co.uk, or alternatively from a nearby monitor in a background location.				
Note 3: The calculator follows the procedure set out in Box 2.3 of LAQM TG(09). The results will have a greater uncertainty than the measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.				
Issue 4: 25/01/11. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Contact: benmarner@aqconsultants.co.uk				k

Appendix D: Summary of Air Quality Objectives in England

 Table D.1
 Summary of Air quality objectives in England

Dollutont	Air Quality Objective ⁵			
Pollutant	Concentration	Measured as		
Nitrogen dioxide	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean		
(NO ₂)	40 µg/m ³	Annual mean		
Particulate Matter	50 μg/m ³ , not to be exceeded more than 35 times a year	24-hour mean		
(PM ₁₀)	40 µg/m ³	Annual mean		
	350 μg/m ³ , not to be exceeded more than 24 times a year	1-hour mean		
Sulphur dioxide (SO ₂)	125 μg/m ³ , not to be exceeded more than 3 times a year	24-hour mean		
	266 μg/m ³ , not to be exceeded more than 35 times a year	15-minute mean		

 $^{^5}$ The units are in microgrammes of pollutant per cubic metre of air (µg/m³).

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the LA intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
AQO	Air Quality Objective
ASR	Air quality Annual Status Report
AURN	Automatic Urban and Rural Network (UK air quality monitoring network)
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England
LAQM	Local Air Quality Management
LEBS	Low Emission Bus Scheme
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
OLEV	Office of Low Emission Vehicles
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA/QC	Quality Assurance and Quality Control

- SO₂ Sulphur Dioxide
- ULEV Ultra Low Emission Vehicles
- WCC Worcester City Council
- WRS Worcestershire Regulatory Services

References

- 10.DEFRA (2016) 'Local Air Quality Management Policy Guidance LAQM PG.(16)' (draft)
- 11.DEFRA (2016) 'Local Air Quality Management Technical Guidance LAQM TG.(16)' (draft)
- 12.DEFRA (2015) 'National Diffusion Tube Bias Adjustment Factor Spreadsheet v.03/15'
- 13. Worcestershire Regulatory Services (2013) 'Air Quality Action Plan for Worcestershire'
- 14. Worcestershire Regulatory Services (2015) 'Air Quality Action Plan Progress Report for Worcestershire April 2013-April 2015'
- 15. Worcestershire Regulatory Services (2015) 'Local Air Quality Management (LAQM) Update for Worcester City Council March 2015'
- 16. Worcestershire Regulatory Services (2015) 'Worcester City Local Air Quality Management (Council Members) Update July 2015'
- Worcestershire Regulatory Services (2015) 'Worcestershire Air Quality Steering Group – Worcester Urban AQMAs Sub Group Newsletter August 2015'