Worcestershire **Regulatory Services** *Supporting and protecting you*

Worcester City Source Apportionment Assessment 2022

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

April 2022

Local Authority Officer	Stephen Williams
Department	Land & Air Quality Team
Address	Wyre Forest House Finepoint Way Kidderminster Worcestershire DY11 7WF
Telephone	01905 822799
E-mail	wrsenquiries@worcsregservices.gov.uk
Report Reference number	WCC/WORC/SA/2022
Date	April 2022

Table of Contents

1.0	Introduction
2.0	Air Quality Objectives
3.0	Declaration5
4.0	Methodology and Input Data 8
	4.1 Emission Factor Toolkit8
	4.2 Traffic Data
	4.3 Diffusion Tube Data9
5.0	Background and Local Contributions11
6.0	Required Improvements15
	6.1 The Tything (Tyn)17
	6.2 Foregate Street (Fos)20
	6.3 The Butts (But2)23
	6.4 Bridge Street (BRS2)26
	6.5 The Cross (Bkc)
	6.6 All Saints Road (DDASH)32
	6.7 Lowesmoor (Lwm1)35
	6.8 St Johns (Stj1)
	6.9 London Road
6.10	Overview of all Locations
7.0	Summary and Conclusions

Appendices

Appendix A AQMA and Diffusion Tube Location Plan Appendix B EFT Input Data and Outputs Appendix C Source Apportionment Calculations

List of Tables

Table 1 National Air Quality Objectives – nitrogen dioxide5
Table 2 Annual mean NO2 concentrations measured at diffusion tube locations along 9
Table 3 Measured NO2 concentrations & contribution of each main source type 11
Table 4 Concentrations & percentage contribution of emissions to local traffic sources 12 / 13
Table 5 Breakdown of top contributions

Table 6 Required reduction in annual mean concentration at worst-case	
receptor	15
Table 6 Nominal emissions reduction per vehicle type	16
Table 6.1 Required reduction Tyn	19
Table 6.2 Required reduction Fos	22
Table 6.3 Required reduction But2	25
Table 6.4 Required reduction BRS2	28
Table 6.5 Required reduction Bkc	31
Table 6.6 Required reduction DDASH	34
Table 6.7 Required reduction Lwm1	37
Table 6.8 Required reduction Stj1	38
Table 6.9 Required reduction at R12	40
Table 6.10 Comparison of Emissions All	42

List of Figures

7
. 14
. 17
. 20
. 23
. 26
. 29
. 32
. 35
. 38
. 40
. 43

1.0 Introduction

This report fulfils the requirements of the Local Air Quality Management (LAQM) process as set out in Part IV of the Environment Act 1995, the Air Quality Strategy for England, Wales and Northern Ireland 2007 and the relevant Policy and Technical Guidance.

Policy Guidance (LAQM.PG16) requires a Local Authority to produce an Air Quality Action Plan (AQAP) following declaration of an Air Quality Management Area (AQMA). In order to develop an appropriate plan, it is necessary to identify the emission sources contributing to the exceedance of the Objective.

2.0 Air Quality Objectives

The air quality objectives set out in the Air Quality (England) Regulations 2000, as amended by the Air Quality (England) (Amendment) Regulations 2002, provide the statutory basis for the air quality objectives under LAQM in England. The relevant objectives for the propose of this assessment are set out in Table 1 below.

Table 1 Nitrogen Dioxide National Air Quality Objectives

Pollutant	Objective	Averaging Period	Obligation
	200µg/m³		
Nitrogen	not to be exceeded more than 18 times a year	1-hour mean	authorities
	40µg/m³	Annual mean	All local authorities

3.0 Declaration

Three Air Quality Management Areas (AQMA) were declared by Worcester City Council in 2009 for exceedances of the annual average mean objective for nitrogen dioxide (NO₂):

- Dolday/Bridge Street AQMA declared 1st March 2009.
- Lowesmoor/Rainbow Hill AQMA declared 1st March 2009; and
- Newtown Road AQMA declared 1st March 2009.

The Newtown Road AQMA was revoked by the council on 30th July 2014.

A further AQMA was declared by the council for the St Johns area of Worcester for exceedance of the annual mean objective for NO2 on 26th September 2014.

In 2017, a detailed assessment was undertaken of an area within London Road and Sidbury by Air Quality Consultants (AQC) on behalf of Worcester City Council. The AQC report concluded that an area at the western end of London Road should be declared as an AQMA. A copy of AQC (July 2017) 'Detailed Assessment of Air Quality along London Road, Worcester' (ref: J2829A/1/F1) is available to download from WRS website at http://www.worcsregservices.gov.uk/pollution/air-quality/local-air-quality-progressreports.aspx

Additionally, long term trend measurements and automatic analyser results up to 2018 within Foregate Street, The Butts and The Tything, Worcester indicated that requirement for a new AQMA declaration of this combined study area would likely be confirmed by detailed assessment.

On the 11th June 2019 Worcester City Council formally declared the Worcester City AQMA (Political Boundary of Worcester City) which encompasses the whole district area as an AQMA, for likely breach of the nitrogen dioxide annual mean.

Additionally, Worcester City Council AQMAs Variation Order 2019 consolidates the existing 2009 and 2014 AQMAs, as detailed above, into the Worcester City AQMA (Political Boundary of Worcester City) as of 11th June 2019.

Details of declaration and plans of the AQMAs can be found on the following pages of WRS website: <u>Air Quality Management Area Declarations | Worcestershire Regulatory</u> <u>Services (worcsregservices.gov.uk)</u>

In 2013, WRS produced a countywide Air Quality Action Plan (AQAP) for Worcestershire which was adopted by Worcester City Council. WRS have produced two updates to the AQAP, the latest in September 2016. Following the identification of further areas of exceedance across Worcester City, and subsequent declaration of the Citywide AQMA, it is necessary to develop a new action plan relevant to these changes.

This report details the first steps in the process of developing a new Action Plan for improving nitrogen dioxide levels within the Worcester City AQMA. The report aims to identify and quantify the various emission sources which contribute to the exceedances occurring at different locations across the city.

Work previously commenced at the start of 2020 but was suspended due to the outbreak of the Covid-19 Pandemic which had severe impacts on traffic movements and behaviour. Traffic

movements were deemed to have returned to normal at the tail end of 2021 when progress was resumed, and the outstanding traffic surveys carried out.

4.0 Methodology and Input Data

This source apportionment assessment has been undertaken generally following the process outlined in Technical Guidance (LAQM.TG16). LAQM.TG16 (paragraph 7.100) advises that "source apportionment may be undertaken using a simple spreadsheet approach. For example, where road traffic emissions are the principal concern, the percentage contribution to NOX emissions may be calculated using the appropriate emissions factors". This approach has been adopted for the Worcester City source apportionment assessment utilising Defra's Emissions Factor Toolkit (EfT) v11.0.

Copies of the Emission Factor Toolkit input and outputs are shown in Appendix B.

4.1 Emission Factor Toolkit

Source apportionment was undertaken using the most recent version of DEFRA's Emission Factor Toolkit (EfT v11.0).

4.2 Traffic Data

Traffic Count Data

WRS commissioned 12-hour road traffic counts to be undertaken by Worcestershire County Council at the locations within the Worcester City AQMA where exceedances have been recorded. The first traffic surveys were carried out in March 2020 for Foregate Street, The Butts and the Tything. Other traffic surveys were scheduled to take place but were cancelled due to the Covid-19 Pandemic and subsequent lockdowns which heavily reduced traffic flows. The outstanding surveys were conducted in November 2021 for All Saints Road, Bridge Street, Lowesmoor, and the Cross once traffic volumes were considered to have returned to prepandemic levels.

The traffic count data were scaled to 24hours using DfT Table TRA037. A separate figure was calculated to scale taxi journeys from available data to reflect the level of evening and weekend operation. The traffic data and scaling calculations are provided in Appendix B.

Speed Data

Speed data for the various routes within Worcester City were derived from basic speed surveys carried out by WRS in January and February 2020. The surveys were carried out

using Android App "Speedometer GPS" which uses the inbuilt GPS of the smart phone to monitor and record journey statistics, including speed. These data are then displayed on a Google base map. The data is stored and can be reviewed later however there is no function to export the data from the app and as such it is not possible to reproduce it in full as part of this report. A summary of the information gathered is provided in Appendix B.

4.3 Diffusion Tube Data

Worcester City Council monitors annual mean nitrogen dioxide concentrations using passive diffusion tubes with 37 locations currently located across the District. Various diffusion tube monitoring locations are present within the areas of concern located inside the citywide AQMA area. Plans showing the locations of diffusion tube monitoring locations in relation to the study areas are included in Section 6. Where two or more diffusion tubes were located within the same study area the location recording the highest NO₂ concentration has generally been utilised to represent worst case conditions. The most representative monitoring location has been used in each case to inform the study. Two locations within Foregate Street (Fos and Fos2) have been included to provide comparison as the location with the highest concentrations is located at the edge of the study area at a busy signal-controlled crossroads.

It was decided to use data from 2018 as this was considered the most representative of concentrations. 2017 and 2019 data were subject to a low bias adjustment factor leading to lower than expected results. 2020 and 2021 results were even more heavily reduced due to the impacts of the Corona Virus Pandemic and subsequent lockdowns. 2018 was therefore considered to be more appropriate year to use being in line with previous long-term trends. LAQM.TG16 advises that as diffusion tubes are not the reference method, and passive diffusion typically results in a low accuracy, it is necessary to bias adjust the results based upon local or national collocation studies with chemiluminescent analysers. The bias - adjustment factor of 0.89 issued by Defra was utilised to adjust the 2018 data.

Table 2	Annual	mean	nitrogen	dioxide	concentrations	measured	at	diffusion	tube
location	s within	the stu	idy areas	(µg/m³)					

Site	Description	2018 ^{abc}
Tyn	925 - Hammerchilds, The Tything, WR1 1JT	47.21
Fos	Foregate Street junction with Shaw Street, WR1 1EB	48.51
Fos2	Hewitt Recruitment, 35 Foregate Street, WR1 1EE	35.81
But2	Magdala Court, The Butts, WR1 3PB	52.43
BRS2	Bridge Street, WR1 3NJ	47.7
Bkc	Berkeley Court, Foregate Street, Worcester, WR1 3QF	46.94
DDASH	All Saints House, WR1 3NX	43.8
Lwm1	Lowesmoor, Rainbow Hill End, WR1 2SE	41.2
Objective	40	

^a bias-adjusted using 2018 defra national factor 0.89
 ^b annualised in accordance with DEFRA TG16
 ^c calculated back to relevant exposure in accordance with DEFRA TG16

5.0 Background and Local Contributions

Technical guidance (LAQM.TG16) advises that determining "...the apportionment for NO_2 is not straightforward due to the non-linear relationship between emissions of NO_2 and nitrous oxides (NO_X). This is additionally complicated by the different proportions of NO_2 in the NO_X emission for different sources, for example, petrol cars or diesel cars. The following advise therefore applies to NO_2 source apportionment:

- Background contributions: the national maps will give the total background NO₂ concentration. This should be apportioned to regional and local background using the ration of the background NO_x concentrations attributable to these two sources, which are also available in the national maps; and
- Local contributions: the local contribution to NO₂ is the difference between the total (measured or modelled) NO₂ and the total background NO₂. This is then apportioned to the local sources, for example, buses, HGVs, taxis, cars, using the relative contributions of these sources to the local NO_x concentration"

Regional and total background concentrations of NO_X and NO_2 for 2018, available from the DEFRA website, have been used to calculate the contribution of local NO_2 for the relevant monitoring locations for each area recording the highest measured level of NO_2 following the procedure laid out in LAQM.TG16 Box 7.5. The local contribution has then been apportioned to each vehicle class according to the results of the EfT. Calculations are presented in Appendix C. The results are summarised in Tables 3 and 4 below.

	Annual Mean Concentration (µg/m³)										
Site ID	Regional Background	Local Background	Cars	LGVs	Taxis	HGVs	Buses	MCs	Total		
Tything (Tyn)	9.12	4.5	16.29	6.18	2.35	4.16	4.6	0.03	47.21		
Foregate (Fos)	9.12	4.5	12.1	4.65	4.68	2.93	10.48	0.03	48.51		
The Foregate (Fos2)	9.12	4.5	7.7	2.95	2.98	1.86	6.67	0.02	35.81		
The Butts (But2)	9.12	4.5	8.52	3.65	2.43	2.06	22.13	0.02	52.43		
Bridge Street (BRS2)	8.43	4.69	17.25	6.96	1.48	4.02	4.82	0.05	47.70		
The Cross (Bkc)	9.12	4.5	7.69	3.13	4.26	2.2	16.02	0.04	46.94		
All Saints Road (DDASH)	8.43	4.69	13.74	4.72	1.18	3.96	7.02	0.05	43.80		
Lowesmoor (Lwm1)	10.07	4.21	5.09	2.91	2.02	1.21	15.67	0.01	41.20		
				% Contrib	ution to To	tal					
Site ID	Regional Background	Local Background	Cars	LGVs	Taxis	HGVs	Buses	MCs	Total		
The Tything (Tyn)	<mark>19.32</mark>	9.53	<mark>34.51</mark>	<mark>13.09</mark>	4.98	8.82	9.75	0.07	100		
Foregate (Fos)	18.82	9.29	<mark>24.95</mark>	9.58	9.64	6.03	<mark>21.6</mark>	0.06	100		
Foregate Street (Fos2)	<mark>25.49</mark>	12.58	<mark>21.5</mark>	8.25	8.31	5.19	<mark>18.62</mark>	0.06	100		
The Butts (But2)	<mark>17.39</mark>	8.58	<mark>16.25</mark>	6.96	4.63	3.92	<mark>42.21</mark>	0.04	100		
Bridge Street (BRS2)	<mark>17.67</mark>	9.83	<mark>36.16</mark>	<mark>14.59</mark>	3.11	8.43	10.1	0.11	100		
The Cross (Bkc)	<mark>19.4</mark>	9.58	<mark>16.39</mark>	6.66	9.07	4.69	<mark>34.12</mark>	0.09	100		
All Saints Road (DDASH)	<mark>19.25</mark>	10.71	<mark>31.38</mark>	10.77	2.7	9.05	16.02	0.11	100		
Lowesmoor (Lwm1)	<mark>24.44</mark>	10.22	12.35	7.06	4.91	2.94	<mark>38.04</mark>	0.03	100		

Table 3 Measured NO₂ concentrations & contribution of each main source type

Background split determined following technical guidance in Defra (Oct 2016) 'Background Concentration Maps User Guide':

(1) Regional background includes emissions from sources not in LA control e.g. Motorways outside of study area, Industrial sources, Domestic properties, Railways, Rural sources, Others

(2) Local background includes emissions from sources LA have some influence over e.g. Primary A roads, Minor Roads and Point sources in and outside of study area

Table 3 above demonstrates that the main contributors to emissions within the study areas are cars within the Tything, Foregate Street (Fos), Bridge Street, and All Saints Road. Buses are indicated to be the main contributor at the Butts, the Cross, and Lowesmoor. The

regional background is the highest source attributed at Foregate (Fos2), and second highest in six of the areas, and third at Foregate Street (Fos). Cars and regional background contributions are in the top three contributions for all 8 locations, with buses in 6 out of the 8 locations, and LGVs making up the remaining 2.

As the local authority is largely unable to influence regional background levels it is more useful to consider the source apportionment of the local traffic sources in isolation when developing actions for improving air quality. Table 4 below illustrates the local traffic contribution, excluding background concentrations, broken down into vehicle type.

Annual Mean Concentration (µg/m ³)										
Site ID	Cars			LGVs		Taxis	HGVs	Buses	MCs	Total
	Petrol	Diesel	Other	Petrol	Diesel					
Tything (Tyn)	2.15	<mark>14.07</mark>	0.07	0.03	<mark>6.15</mark>	2.35	<mark>4.16</mark>	<mark>4.6</mark>	0.03	33.59
Foregate (Fos)	1.58	10.51	0.02	0.01	<mark>4.64</mark>	<mark>4.68</mark>	2.92	<mark>10.49</mark>	0.03	34.88
Fos2	1.01	<mark>6.68</mark>	0.02	0	<mark>2.95</mark>	<mark>2.98</mark>	1.86	<mark>6.67</mark>	0.02	22.19
The Butts (But2)	1.07	<mark>7.43</mark>	0.02	0.02	<mark>3.64</mark>	<mark>2.43</mark>	2.05	<mark>22.13</mark>	0.02	38.81
Bridge Street (BRS2)	2.16	15	0.08	0.01	<mark>6.95</mark>	1.48	4.02	<mark>4.82</mark>	0.05	34.57
The Cross (Bkc)	0.93	<mark>6.71</mark>	0.03	0.01	<mark>3.12</mark>	<mark>4.26</mark>	2.2	<mark>16.03</mark>	0.03	33.32
All Saints Road (DDASH)	1.73	11.97	0.02	0.01	<mark>4.72</mark>	1.19	<mark>3.97</mark>	<mark>7.03</mark>	0.04	30.68
Lowesmoor (Lwm1)	0.64	<mark>4.43</mark>	0.02	0.01	<mark>2.92</mark>	<mark>2.02</mark>	1.21	<mark>15.66</mark>	0.01	26.92
	% Contribution to Total									
		Cars		LO	6Vs	Taxia		_		Total
Site ID	Petrol	Diesel	Other	Petrol	Diesel	TAXIS	HGVS	HGVs Buses	Motorcycles	
Tything (Tyn)	6.4	<mark>41.9</mark>	0.2	0.10	<mark>18.3</mark>	7	12.4	13.7	0.10	100
Foregate (Fos)	4.53	<mark>30.12</mark>	0.07	0.02	<mark>13.3</mark>	<mark>13.41</mark>	8.37	<mark>30.08</mark>	0.09	99.99
Fos2	4.53	<mark>30.12</mark>	0.07	0.02	<mark>13.3</mark>	<mark>13.41</mark>	8.37	<mark>30.08</mark>	0.09	99.99
The Butts (But2)	2.76	<mark>19.15</mark>	0.04	0.04	<mark>9.37</mark>	<mark>6.26</mark>	5.29	<mark>57.03</mark>	0.05	99.99

Table 4 - Concentrations & percentage contribution of emissions to local traffic sources

Bridge Street (BRS2)	6.26	<mark>43.38</mark>	0.24	0.03	<mark>20.09</mark>	4.29	<mark>11.63</mark>	<mark>13.93</mark>	0.15	100
The Cross (Bkc)	2.79	<mark>20.15</mark>	0.1	0.01	<mark>9.36</mark>	12.79	6.6	<mark>48.1</mark>	0.1	100
All Saints Road (DDASH)	5.64	<mark>39.03</mark>	0.07	0.02	<mark>15.38</mark>	3.87	12.94	<mark>22.9</mark>	0.15	100
Lowesmoor (Lwm1)	2.37	<mark>16.44</mark>	0.09	0.01	<mark>10.84</mark>	<mark>7.51</mark>	4.5	<mark>58.19</mark>	0.05	100

Highest Contribution, Second, Third, Fourth

Table 4 illustrates the contributors to emissions within the study areas with background concentrations removed shown as a percentage and as micrograms per cubic metre (μ g/m³) for the remaining roadside concentrations. To help identify and rank the concentrations the greatest values are shown in red, the second highest in yellow, the third in green and the fourth in blue. The highest contributors are diesel cars in 5 of the study areas and buses in the other 3. Again, six of the second highest contributors are shown to be diesel cars and buses with the remaining two being diesel LGVs. The third largest comprise buses, LGV diesels and taxis, with the fourth highest contributor comprising the remaining diesel LGVs, taxis and HGVs. For clarity, the rankings are shown in the table below.

Site ID	First Largest Contributor (% / μg/m³)	Second	Third	Fourth
The Tything	Diesel Cars	Diesel LGVs	Buses	HGVs
(Tyn)	(41.9% / 14.07µg/m³)	(18.3% / 6.15µg/m³)	(13.7% / 4.6µg/m³)	(12.4% / 4.16µg/m³)
Foregate Street	Diesel Cars	Buses	Taxis	Diesel LGVs
(Fos)	(30.12% / 10.51µg/m³)	(30.08 / 10.49µg/m³)	(13.41% / 4.68µg/m³)	(13.3% / 4.64µg/m³)
Foregate Street	Diesel Cars	Buses	Taxi	Diesel LGVs
(Fos2)	(30.12% / 6.68µg/m³)	(30.08% / 6.67µg/m³)	(13.41% / 2.98µg/m³)	(13.3% / 2.95µg/m³)
The Butts (But2)	Buses	Diesel Cars	Diesel LGVs	Taxis
	(57.03% / 22.13µg/m³)	(19.15% / 7.43µg/m³)	(9.37% / 3.64µg/m³)	(6.26% / 2.43µg/m³)
Bridge Street	Diesel Cars	Diesel LGVs	Buses	HGVs
(BRS2)	(43.38% / 15µg/m³)	(20.09% / 6.95µg/m³)	(13.93% / 4.82µg/m³)	(11.63% / 4.02µg/m³)
The Cross (Bkc)	Buses	Diesel Cars	Taxis	Diesel LGVs
	(48.1% / 16.03µg/m³)	(20.15% / 6.71µg/m³)	(12.79% / 4.26µg/m³)	(9.36% / 3.12µg/m³)
All Saints Road	Diesel Cars	Buses	Diesel LGVs	HGVs
(DDASH)	(39.03% / 11.97µg/m³)	(22.09% / 7.03µg/m³)	(15.38% / 4.72µg/m³)	(12.94% / 3.97µg/m³)
Lowesmoor	Buses	Diesel Cars	Diesel LGVs	Taxis
(Lwm1)	(58.19% / 15.66µg/m³)	(16.44% / 4.43µg/m³)	(10.84% / 2.92µg/m³)	(7.51% / 2.02µg/m³)

Table 5 – Breakdown of top contributions to emissions in each area

6.0 Required Improvements

The degree of improvement required to achieve the annual mean objective for nitrogen dioxide (NO_2) is the difference between the highest measured or predicted concentration and the objective level (40µg/m³). For example, the highest nitrogen dioxide concentration at a representative location in the Tything study area in 2018 is 47.21µg/m³ at Tyn, requiring a reduction of 7.21µg/m³ for the objective to be met.

However Technical Guidance (LAQM.TG16) advises that in terms of the reduction in emissions required it is more useful to consider nitrogen oxides (NOx). Therefore, the road NOx reduction required for compliance with the national air quality objectives in the Tything at Tyn has been calculated in accordance with LAQM.TG16 Box 7.6 utilising Defra's NOx to NO₂ Conversion Spreadsheet v5.1. Calculations are included in Appendix C.

It is generally accepted that the revocation of an AQMA is not appropriate unless measured concentrations are consistently below the objective to avoid 'bouncing' between revocation and re-declaration of borderline AQMAs. Therefore, the reduction in NO_X required to achieve targets at 5% and 10% below the objective have also been calculated. Achieving these levels would provide greater confidence to the local authority that emissions of NO₂ are unlikely to exceed the objective again. A summary of the required reductions in NO_X and NO₂ to achieve concentrations of $36\mu g/m^3$, $38\mu g/m^3$ and $40\mu g/m^3$ at the relevant monitoring locations are presented in Table 6 below.

	Required reduction in NO _x /NO ₂ concentrations at monitoring locations											
	Required reduction to: -	Required NO _x reduction (μg/m ³)	Required NO _x reduction (% of local sources)	Equivalent NO ₂ reduction (µg/m ³)								
The	Objective 40µg/m ³	19.40	26.54	8.91								
Tything	5% below obj. 38µg/m ³	23.93	32.74	10.99								
(Tyn)	10% below obj. 36µg/m ³	28.38	38.82	13.04								
Foregate Street (Fos)	Objective 40µg/m ³	22.61	29.63	10.34								
	5% below obj. 38µg/m ³	27.14	35.57	12.41								
	10% below obj. 36µg/m ³	31.59	41.4	14.44								
Foregate	Objective 40µg/m ³	n/a	n/a	n/a								
Street	5% below obj. 38µg/m ³	n/a	n/a	n/a								
(Fos2)	10% below obj. 36µg/m ³	1.81	3.89	0.86								
The Putte	Objective 40µg/m ³	32.5	37.7	14.63								
(But2)	5% below obj. 38µg/m ³	37.03	42.96	16.67								
(Butz)	10% below obj. 36µg/m ³	41.48	48.12	18.68								
Bridge	Objective 40µg/m ³	20.72	27.79	9.61								
Street	5% below obj. 38µg/m ³	25.27	33.89	11.72								
(BRS2)	10% below obj. 36µg/m ³	29.73	39.87	13.79								

Table 6 Required reduction in annual mean concentration at monitoring locations

The Cross	Objective 40µg/m ³	17.63	24.66	8.22
(Pko)	5% below obj. 38µg/m ³	22.18	31.03	10.34
(DKC)	10% below obj. 36µg/m ³	26.64	37.27	12.42
All Saints	Objective 40µg/m ³	11.19	17.2	5.28
Road	5% below obj. 38µg/m ³	15.74	24.2	7.42
(DDASH)	10% below obj. 36µg/m ³	20.20	31.06	9.53
	Objective 40µg/m ³	2.9	5.11	1.38
Lowesinoor	5% below obj. 38µg/m ³	7.45	13.13	3.53
(Lwiiii)	10% below obj. 36µg/m ³	11.91	20.99	5.65

Table 6 indicates that the largest reduction of 37.7% in emissions, or $14.63\mu g/m^3$, is required within the Butts study area (But2) to reduce level of NO₂ to the objective. The smallest reduction of 5.11%, or $1.38\mu g/m^3$, is required at Lowesmoor (Lwm1). All other areas fall within that range bracket with the exception of Fos2 that already measures within the objective and therefore no reduction is required (although a 0.86 $\mu g/m^3$ decrease is required to be 10% below).

This report does not focus on how required reductions might be achieved. However, in order to inform the focus of potential measures for consideration as part of Action Plan development the information below demonstrates the reduction in emissions that could be expected to be achieved in each of the study areas, assuming stepped nominal emission reductions for each main vehicle category.

6.1 The Tything (Tyn)

The traffic data survey was undertaken along the Tything, north of St Mary's Street, taking account of north and south bound traffic on the 3rd March 2020. The plan below shows the study area and location of monitoring point Tyn.

The traffic survey identified the following proportion of vehicles.

The emissions output based on traffic composition were then calculated and can be seen on the chart below.

	Tything Reduction in Emissions (μg/m3)												
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction		
Cars	16.29	1.629	3.258	4.887	6.516	8.145	9.774	11.403	13.032	14.661	16.29		
Taxis	2.35	0.235	0.47	0.705	0.94	1.175	1.41	1.645	1.88	2.115	2.35		
LGVs	6.18	0.618	1.236	1.854	2.472	3.09	3.708	4.326	4.944	5.562	6.18		
HGVs	4.16	0.416	0.832	1.248	1.664	2.08	2.496	2.912	3.328	3.744	4.16		
Buses	4.6	0.46	0.92	1.38	1.84	2.3	2.76	3.22	3.68	4.14	4.6		
MC	0.03	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03		
Total Vehicles	33.61	3.388	6.776	10.164	13.552	16.94	20.328	23.716	27.104	30.492	33.61		

Table 6.1 Required reduction in annual mean concentration at Tyn

*reductions that would achieve the national objective of 40μg/m³ **reductions that would achieve 5% below the objective (38μg/m³) ***reductions that would achieve 10% below the objective (36μg/m³)

As indicated in table 6 previously a reduction of $8.91\mu g/m^3$ or more would be required to meet the national objective, $10.99\mu g/m^3$ for 5% below the objective, and $13.04\mu g/m^3$ for 10% below.

Table 6.1 demonstrates that to achieve the NO_2 results highlighted above reductions targeting individual types of vehicle in isolation within the Tything would not lead to the annual mean objective being achieved. Cars would be an exception to this but would require a very large reduction of 60% or more to fall below the objective.

Actions to improve emissions are likely needed to target more than one type of vehicle to achieve the desired reduction. Table 6.1 demonstrates that a reduction of 30% or more is required across all vehicle types to meet the objective.

6.2 Foregate Street (Fos)

The traffic data survey was undertaken along Foregate Street, between Shaw Street and Castle Street, observing north and south bound traffic on the 10th March 2020. The plan below shows the study area and location of monitoring points Fos and Fos 2. Location Fos3 was not utilised as recorded concentrations are much lower.

The traffic survey showed the following proportion of vehicles within Foregate Street.

The emissions output based on traffic composition show the following roadside contributions.

Foregate (Fos) Reduction in Emissions (µg/m3)												
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction	
Cars	12.11	1.211	2.422	3.633	4.844	6.055	7.266	8.477	9.688	10.899	12.11	
Taxis	4.68	0.468	0.936	1.404	1.872	2.34	2.808	3.276	3.744	4.212	4.68	
LGVs	4.65	0.465	0.93	1.395	1.86	2.325	2.79	3.255	3.72	4.185	4.65	
HGVs	2.92	0.292	0.584	0.876	1.168	1.46	1.752	2.044	2.336	2.628	2.92	
Buses	10.49	1.049	2.098	3.147	4.196	5.245	6.294	7.343	8.392	9.441	10.49	
MC	0.03	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03	
Total Vehicles	34.88	3.488	6.976	10.464	13.952	17.44	20.928	24.416	27.904	31.392	34.88	

Table 6.2 Required reduction in annual mean concentration at Fos

*reductions that would achieve the national objective of $40\mu g/m^3$

*reductions that would achieve 5% below the objective (38µg/m³)

***reductions that would achieve 10% below the objective $(36 \mu g/m^3)$

As indicated in table 6 previously a reduction of $10.34\mu g/m^3$ or more would be required to meet the national objective, $12.41\mu g/m^3$ for 5% below the objective, and $14.44\mu g/m^3$ for 10% below, based on concentrations recorded at monitoring location Fos.

Table 6.2 indicates that to achieve the NO_2 results highlighted above reductions targeting individual types of vehicle in isolation generally would not lead to the annual mean objective being achieved. The data indicates that a 90% or more reduction in the number of cars or 100% reduction in buses would be required to achieve the objective.

Actions to improve emissions are likely needed to target more than one vehicle type to achieve the desired reduction. Table 6.2 demonstrates that a reduction of 30% or more is required across all vehicle types to meet the objective, a 40% reduction would achieve concentrations 5% below the objective, and a 50% or more reduction would be necessary to achieve 10% below the objective.

The required reduction data has not been provided for location Fos2 as concentrations have been recorded below the objective.

6.3 The Butts (But2)

The traffic data survey was undertaken along the Butts with the traffic flowing east bound on the 12th March 2020. The plan below shows the study area and location of monitoring point But2. But2 was used instead of But1 due to the slightly higher concentrations being recorded at this location.

The traffic survey showed the following proportion of vehicles within the Butts.

The emissions output based on traffic composition show the following roadside contributions.

	The Butts (But2) Reduction in Emissions (µg/m3)												
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction		
Cars	8.52	0.852	1.704	2.556	3.408	4.26	5.112	5.964	6.816	7.668	8.52		
Taxis	2.43	0.243	0.486	0.729	0.972	1.215	1.458	1.701	1.944	2.187	2.43		
LGVs	3.66	0.366	0.732	1.098	1.464	1.83	2.196	2.562	2.928	3.294	3.66		
HGVs	2.05	0.205	0.41	0.615	0.82	1.025	1.23	1.435	1.64	1.845	2.05		
Buses	22.13	2.213	4.426	6.639	8.852	11.065	13.278	15.491	17.704	19.917	22.13		
МС	0.02	0.002	0.004	0.006	0.008	0.01	0.012	0.014	0.016	0.018	0.02		
Total Vehicles	38.81	3.881	7.762	11.643	15.524	19.405	23.286	27.167	31.048	34.929	38.81		

Table 6.3 Required reduction in annual mean concentration at But2

*reductions that would achieve the national objective of 40μg/m³ **reductions that would achieve 5% below the objective (38μg/m³) ***reductions that would achieve 10% below the objective (36μg/m³)

As indicated in table 6 previously a reduction of $14.63\mu g/m^3$ would be required to meet the national objective, $16.67\mu g/m^3$ for 5% below the objective, and $18.68\mu g/m^3$ for 10% below, based on concentrations recorded at monitoring location But2.

Table 6.3 above demonstrates that it would require a large reduction of 70% or more in bus emissions to meet the annual mean objective. Actions to improve emissions are therefore likely needed to target more than one vehicle type to achieve the desired reduction. A reduction of 40% or more is required across all vehicle types to meet the objective, a 50% reduction would achieve concentrations 10% below the objective.

6.4 Bridge Street (BRS2)

The traffic data survey was undertaken along Bridge Street on the 11th November 2021 observing traffic travelling southbound along the one-way section of road. The plan below shows the study area and location of monitoring point BRS2.

The traffic survey showed the following split of vehicles within Bridge Street.

The emissions output based on traffic composition show the following roadside contributions.

	Bridge Street (BRS2) Reduction in Emissions (μg/m3)												
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction		
Cars	17.24	1.724	3.448	5.172	6.896	8.62	10.344	12.068	13.792	15.516	17.24		
Taxis	1.48	0.148	0.296	0.444	0.592	0.74	0.888	1.036	1.184	1.332	1.48		
LGVs	6.96	0.696	1.392	2.088	2.784	3.48	4.176	4.872	5.568	6.264	6.96		
HGVs	4.02	0.402	0.804	1.206	1.608	2.01	2.412	2.814	3.216	3.618	4.02		
Buses	4.82	0.482	0.964	1.446	1.928	2.41	2.892	3.374	3.856	4.338	4.82		
МС	0.05	0.005	0.01	0.015	0.02	0.025	0.03	0.035	0.04	0.045	0.05		
Total Vehicles	34.57	3.457	6.914	10.371	13.828	17.285	20.742	24.199	27.656	31.113	34.57		

Table 6.4 Required reduction in annual mean concentration at BRS2

*reductions that would achieve the national objective of 40µg/m³
*reductions that would achieve 5% below the objective (38µg/m³)
**reductions that would achieve 10% below the objective (36µg/m³)

Table 6 previously highlighted that a reduction of $9.61\mu g/m^3$ would be required to meet the national objective, $11.72\mu g/m^3$ for 5% below the objective, and $13.79\mu g/m^3$ for 10% below, based on concentrations monitored at location BRS2.

Table 6.4 indicates that to achieve the NO_2 results highlighted above reductions targeting individual types of vehicle in isolation generally would not lead to the annual mean objective being achieved. The data indicates that a 60% or more reduction in the number of cars would be required to meet the objective.

Actions to improve emissions are therefore likely needed to target more than one vehicle type to achieve the desired reduction. Table 6.4 demonstrates that a reduction of 30% or more is required across all vehicle types to meet the objective, a 40% or greater reduction would achieve concentrations 10% below the objective.

6.5 The Cross (Bkc)

The traffic data survey was undertaken at the Cross on the 11th November 2021 observing traffic utilising the crossroads, consisting of The Foregate, St Nicholas Street, The Cross and Angel Street. Figure 2.5 below shows the study area and location of monitoring points Bkc and Crs1. Monitoring location Bkc was utilised within the study as it is located slightly closer to the crossroads than Crs and has recorded higher concentrations of NO2. Given these factors Bkc was considered the most representative monitoring location.

The traffic survey showed the following proportion of vehicles within the Cross.

The emissions output based on traffic composition show the following roadside contributions.

	The Cross (Bkc) Reduction in Emissions (µg/m3)												
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction		
Cars	7.67	0.767	1.534	2.301	3.068	3.835	4.602	5.369	6.136	6.903	7.67		
Taxis	4.26	0.426	0.852	1.278	1.704	2.13	2.556	2.982	3.408	3.834	4.26		
LGVs	3.13	0.313	0.626	0.939	1.252	1.565	1.878	2.191	2.504	2.817	3.13		
HGVs	2.2	0.22	0.44	0.66	0.88	1.1	1.32	1.54	1.76	1.98	2.2		
Buses	16.03	1.603	3.206	4.809	6.412	8.015	9.618	11.221	12.824	14.427	16.03		
МС	0.03	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03		
Total Vehicles	33.32	3.332	6.664	9.996	13.328	16.66	19.992	23.324	26.656	29.988	33.32		

Table 6.5 Required reduction in annual mean concentration at Bkc

*reductions that would achieve the national objective of 40μg/m³ **reductions that would achieve 5% below the objective (38μg/m³) ***reductions that would achieve 10% below the objective (36μg/m³)

As indicated in table 6 previously a reduction of $8.22\mu g/m^3$ would be required to meet the national objective, $10.34\mu g/m^3$ for 5% below the objective, and $12.42\mu g/m^3$ to achieve 10% below, based on concentrations recorded at monitoring location Bkc.

Table 6.5 above indicates that a reduction in bus emissions of 60% or more would be needed to meet the annual mean objective. Actions to improve emissions are therefore likely needed to target more than one vehicle type to achieve the desired reduction. A reduction of 30% is required across all vehicle types to meet the objective, a 40% or greater reduction would achieve concentrations 10% below the objective.

6.6 All Saints Road (DDASH)

The traffic data survey was undertaken along the one-way All Saints Road on the 11th November 2021. Figure 2.6 below shows the study area and location of monitoring point DDASH.

The traffic survey showed the following proportion of vehicles on All Saints Road.

The emissions output based on traffic composition show the following roadside contributions.

	All Saints Road (DDASH) Reduction in Emissions (µg/m3)												
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction		
Cars	13.72	1.372	2.744	4.116	5.488	6.86	8.232	9.604	10.976	12.348	13.72		
Taxis	1.19	0.119	0.238	0.357	0.476	0.595	0.714	0.833	0.952	1.071	1.19		
LGVs	4.73	0.473	0.946	1.419	1.892	2.365	2.838	3.311	3.784	4.257	4.73		
HGVs	3.97	0.397	0.794	1.191	1.588	1.985	2.382	2.779	3.176	3.573	3.97		
Buses	7.03	0.703	1.406	2.109	2.812	3.515	4.218	4.921	5.624	6.327	7.03		
МС	0.04	0.004	0.008	0.012	0.016	0.02	0.024	0.028	0.032	0.036	0.04		
Total Vehicles	30.68	3.068	6.136	9.204	12.272	15.34	18.408	21.476	24.544	27.612	30.68		

Table 6.6 Required reduction in annual mean concentration at DDASH

*reductions that would achieve the national objective of 40μg/m³ **reductions that would achieve 5% below the objective (38μg/m³) ***reductions that would achieve 10% below the objective (36μg/m³)

As previously highlighted a reduction of 5.28µg/m³ or more would be required to meet the national objective, 7.42µg/m³ for 5% below the objective, and 9.53µg/m³ for 10% below, based on concentrations monitored at location DDASH..

Table 6.6 above indicates that a 40% or more reduction in the number of cars or 80% reduction in buses would be required to achieve the objective. A 20% reduction across all vehicle types is needed to meet the objective, a 30% reduction would achieve concentrations 5% below the objective, and a 40% or more reduction would be necessary to reach 10% below the objective. Unlike many of the study areas the data from All Saints Road indicates that the required reductions could be achieved by targeting various combinations of two or more categories.

6.7 Lowesmoor (Lwm1)

The traffic data survey was undertaken within Lowesmoor on the 11th November 2021 observing traffic travelling westbound and eastbound. Figure 2.7 below shows the study area and location of monitoring point Lwm1. Monitoring location Lwm1 was utilised within the study as the recorded concentrations have been consistently higher than Lwm2 and therefore is the most representative monitoring location.

The traffic survey showed the following proportion of vehicles in Lowesmoor.

The emissions output based on traffic composition show the following roadside contributions.
				Lowesmoor	(Lwm1) Red	uction in Em	issions (µg/r	n3)			
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction
Cars	5.09	0.509	1.018	1.527	2.036	2.545	3.054	3.563	4.072	4.581	5.09
Taxis	2.02	0.202	0.404	0.606	0.808	1.01	1.212	1.414	1.616	1.818	2.02
LGVs	2.93	0.293	0.586	0.879	1.172	1.465	1.758	2.051	2.344	2.637	2.93
HGVs	1.21	0.121	0.242	0.363	0.484	0.605	0.726	0.847	0.968	1.089	1.21
Buses	15.66	1.566	3.132	4.698	6.264	7.83	9.396	10.962	12.528	14.094	15.66
MC	0.01	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.01
Total Vehicles	26.92	2.692	5.384	8.076	10.768	13.46	16.152	18.844	21.536	24.228	26.92

Table 6.7 Required reduction in annual mean concentration at Lwm1

*reductions that would achieve the national objective of 40μg/m³ **reductions that would achieve 5% below the objective (38μg/m³) ***reductions that would achieve 10% below the objective (36μg/m³)

As previously highlighted in Table 6 a reduction of 1.38µg/m³ or more would be required to meet the national objective, 3.53µg/m³ for 5% below the objective, and 5.65µg/m³ for 10% below, based on concentrations monitored at location Lwm1.

Table 6.7 above indicates that a 10% or more reduction in bus emissions, 30% or more reduction in cars, or a 50% reduction in LGVs would satisfy the objective. A 10% reduction across all vehicle types would meet the objective, a 20% reduction would achieve concentrations 5% below the objective, and a 30% or more reduction would achieve 10% below the objective. Unlike many of the other study areas the reduction required to meet the target in Lowesmoor is relatively small and therefore could be achieved by various combinations of categories or the individual vehicle types mentioned previously.

6.8 St Johns (Stj1)

A source apportionment exercise was undertaken by WRS in 2017 and has not been repeated as part of the more recent studies. The study site including monitoring locations is shown on the plan below.

The nominal reductions per vehicle type for emissions at the most representative monitoring location Stj1, are shown in table 6.8 below.

				St Johns (Stj1) Reducti	ion in Emissi	ions (µg/m3)				
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction
Cars	11.6	1.16	2.32	3.48	4.64	5.8	6.96	8.12	9.28	10.44	11.6
LGVs	3.3	0.33	0.66	0.99	1.32	1.65	1.98	2.31	2.64	2.97	3.3
HGVs	3.1	0.31	0.62	0.93	1.24	1.55	1.86	2.17	2.48	2.79	3.1
Buses	10.3	1.03	2.06	3.09	4.12	5.15	6.18	7.21	8.24	9.27	10.3
Total Vehicles	28.3	2.83	5.66	8.49	11.32	14.15	16.98	19.81	22.64	25.47	28.3

Table 6.8 Required reduction in annual mean concentration at Stj1

*reductions that would achieve the national objective of 40µg/m³ **reductions that would achieve 5% below the objective (38µg/m³)

***reductions that would achieve 10% below the objective (36µg/m³)

The source apportionment study indicates that a reduction of $4.76\mu g/m^3$ or more would be required to meet the national objective, $6.95\mu g/m^3$ for 5% below the objective, and

9.09µg/m³ for 10% below, based on concentrations monitored at location Stj1. Outside of regional and local background concentrations, the largest roadside vehicle contributions to emissions were identified as cars (40.92%) and buses (36.36%).

Table 6.8 above indicates that a 50% or more reduction in cars or buses would satisfy the objective. A 20% reduction across all vehicle types would meet the objective, a 30% reduction would achieve concentrations 5% below the objective, and a 40% or more reduction would achieve 10% below the objective. It should be noted that taxis were not differentiated as part of the traffic survey

The report summarised: - "Targeting individual types of vehicles on these local roads in isolation would not lead to the annual mean objective being achieved unless the reductions are very large (between 40 and 50%). However, a reduction in total vehicle emissions of around 20% or targeting a combination of 30% cars and buses would be potentially effective measures for achieving the objective. Greater reductions will be required to achieve more sustainable targets of 5 or 10% below the objective".

A full version of the report can be accessed on the WRS website via the following link: -

source-apportionment-for-st-johns-worcester-aqma-final.pdf (worcsregservices.gov.uk)

6.9 London Road

A source apportionment exercise was undertaken on behalf of WRS in 2017 during a detailed assessment for London Road by Air Quality Consultants (*Detailed Assessment of Air Quality along London Road, Worcester for Worcester City Council* – July 2017). This has not been repeated as part of the more recent studies.

As the study was undertaken as part of a detailed assessment it included air quality modelling at numerous sensitive receptors along the road corridor. The highest predicted concentration was recorded at R12 (5 London Road) and therefore this location was used for calculating required emissions reductions for source apportionment. The modelled receptors from the study are shown on the plan below in Figure 2.9: -

Figure 2.9 London Road Study Area (from 2017 AQC Report)

The nominal reductions per vehicle type for emissions at the modelled location R12, as calculated from the report, are shown in table 6.9 below.

			I	London Road	d (R12) Redu	ction in Emis	ssions (µg/m	3)			
Vehicle Type	Total Emissions	10% reduction	20% reduction	30% reduction	40% reduction	50% reduction	60% reduction	70% reduction	80% reduction	90% reduction	100% reduction
Cars	13.41	1.341	2.682	4.023	5.364	6.705	8.046	9.387	10.728	12.069	13.41
LGVs	5.14	0.514	1.028	1.542	2.056	2.57	3.084	3.598	4.112	4.626	5.14
HGVs	8.78	0.878	1.756	2.634	3.512	4.39	5.268	6.146	7.024	7.902	8.78
Buses	1.31	0.131	0.262	0.393	0.524	0.655	0.786	0.917	1.048	1.179	1.31
МС	0.03	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03
Total Vehicles	28.67	2.867	5.734	8.601	11.468	14.335	17.202	20.069	22.936	25.803	28.67

Table 6.9 Required reduction in annual mean concentration at R12

*reductions that would achieve the national objective of 40µg/m³

**reductions that would achieve 5% below the objective (38µg/m²

***reductions that would achieve 10% below the objective (36µg/m³)

The source apportionment study carried out as part of the 2017 detailed assessment indicates that a reduction of $8.056\mu g/m^3$ or more would be required to meet the national objective. Calculations for further reductions were not included in the report but would be approximately $10.137\mu g/m^3$ to achieve 5% below the objective, and $12.182\mu g/m^3$ for 10% below, based on modelled concentrations at location R12.

Outside of regional and local background concentrations (which would make up 39.27% of all contributions if included), the largest roadside vehicle contributions to emissions were identified as cars (46.77%), HGVs (30.62%), and LGVs (17.93%).

Table 6.9 above indicates that it would require at least a 70% reduction in emissions from cars or 100% removal of HGVs to satisfy the objective. A 30% reduction across all vehicle types would meet the objective, a 40% reduction would achieve concentrations 5% below the objective, and a 50% or more reduction would be necessary to achieve 10% below the objective.

The report summarises with the following: -

"Source apportionment of the local traffic emissions has been undertaken. This shows that, in the majority of cases, local background concentrations contribute the largest proportion to the overall concentration, followed by emissions from cars on the local roads. In a number of cases, emissions from regional background and HGVs also contribute a significant proportion to the overall concentration.

A reduction in traffic emissions along predominantly London Road would result in a decrease in the concentrations of nitrogen dioxide. Reductions in vehicle emissions from local traffic of up to 28.1% would be required to achieve the annual mean nitrogen dioxide objective where the highest concentrations are predicted to occur" (Detailed Assessment of Air Quality along London Road, Worcester for Worcester City Council – Air Quality Consultants – July 2017 (pg.20).

6.10 Overview of all Locations

The source apportionment study undertaken is comprised of a number of separate areas or sections of the road network where exceedances of the annual mean objective for nitrogen dioxide has been identified via the monitoring network. Source apportionment for two of the areas, London Road and St Johns, was carried out separately in 2017 prior to the declaration of the citywide AQMA as each represented an area of concern at that time. Since then other areas of concern (the Tything, Foregate Street, the Butts, the Cross, Bridge Street, All Saints Road, and Lowesmoor) have presented themselves and have been looked at in detail above. Each study area is subject to different conditions and usage and therefore the outcomes vary between the locations as would be expected although there are similarities in some areas. To try and provide more of an overview and understand commonality between the areas, Table 6.10 below, presents the summary of findings.

Location	Emission Reduction Required to Meet Objective	All Vehicle Reduction to Meet Objective (%)	Reduction for 5% b/l objective (%)	Reduction for 10% b/l objective (%)	Highest Roadside Contributor	2nd Roadside Contributor	3rd Roadside Contributor	4th Roadside Contributor	Single Vehicle Reduction to Achieve Objective
The Tything	8.91	26.5	32.7	38.8	Diesel Cars 41.9%	Diesel LGVs 18.3%	Buses 13.7%	HGVs 12.4%	Cars 60%
Foregate Street	10.34	29.6	35.6	41.4	Diesel Cars 30.12%	Buses 30.08%	Taxis 13.41%	Diesel LGVs 13.3%	Cars 90% / Buses 100%
The Butts	14.63	37.7	43	48.1	Buses 57.03%	Diesel Cars 19.15%	Diesel LGVs 9.37%	Taxis 6.26%	Buses 70%
Bridge Street	9.61	27.8	33.9	39.9	Diesel Cars 43.38%	Diesel LGVs 20.09%	Buses 13.93%	HGVs 11.63%	Cars 60%
The Cross	8.22	24.7	31	37.3	Buses 48.1%	Diesel Cars 20.15%	Taxis 12.79%	Diesel LGVs 9.36%	Buses 60%
All Saints Road	5.28	17.2	24.2	31.1	Diesel Cars 39.03%	Buses 22.09%	Diesel LGVs 15.38%	HGVs 12.94%	Cars 40% / Buses 80%
Lowesmoor	1.38	5.1	13.1	21	Buses 58.19%	Diesel Cars 16.44%	Diesel LGVs 10.84%	Taxis 7.51%	Buses 10% / Cars 30% / LGVs 50% / Taxis 70%
St Johns	4.76	16.8	24.6	32.1	Buses 36.36%	Diesel Cars 35.16%	Diesel LGVs 11.41%	HGVs 11.08%	Cars 50% / Buses 50%
London Road	8.06	28.1	35.4	42.5	Cars - 46.77%	HGVs- 30.62%	LGVs - 17.93%	Buses - 4.57%	Cars 70% / HGVs 100%

Table 6.10 Comparison of Emissions Reductions at All Locations

The required reductions to meet the objective, and to achieve 5% and 10% below the objective, are presented in the graph below from highest to lowest.

Figure 3.0 Reductions Required at Each Location

When comparing the equivalent NO₂ reduction required, demonstrated in Tables 6 to 6.10, the results highlight that targeting individual categories of vehicle in isolation would not lead to the annual mean objective being achieved within most of the areas of concern unless the reductions were very large. The exception to this is within Lowesmoor where the required reduction is relatively small and therefore could be achieved by reducing emissions across all vehicle categories, or numbers of one type of vehicle, to the desired level.

In reality, in most cases, actions to improve emissions are likely to have to target more than one type of vehicle. Table 6.10 illustrates that:

- The required reduction across all vehicle types varies between the lowest of 5.1% at Lowesmoor and a highest of 37.7% at the Butts to achieve the objective. A 16.8% to 29.6% reduction is required at all other areas.
- A 13.1% to 43% reduction across all vehicle types is required to achieve concentrations 5% below the objective.
- A 21% to 48.1% reduction across all vehicle types is required to achieve concentrations 10% below the objective.
- Reducing emissions from cars and buses by 25% in St Johns, 30% in All Saints Road, 40% at the Cross, and 50% at the Butts and Foregate Street would potentially be effective measures for achieving the objective.
- Reducing emissions from cars and LGVs by 40% within the Tything and Bridge Street would potentially be an effective measure for achieving the objective.
- Reducing emissions from cars and HGVs by 40% within the London Road would potentially be an effective measure for achieving the objective.
- Reducing emissions from buses by 10% or cars and LGVs by 20% within Lowesmoor would potentially be effective measures for achieving the objective.

7.0 Summary and Conclusions

Worcester City Council consolidated a number of existing AQMAs by declaration of the Worcester City AQMA (Political Boundary of Worcester City) on the 11th June 2019 for likely breach of the nitrogen dioxide annual mean. The AQMA encompasses the boundary of the district.

Source apportionment of background and local sources has been undertaken to inform the development of an Air Quality Action Plan. The source apportionment exercise has been undertaken following guidance set out out in LAQM Technical Guidance 16.

Work previously commenced at the start of 2020 but was suspended due to the outbreak of the Covid-19 Pandemic which had severe impacts on traffic movements and behaviour. The level of traffic flow was deemed to have returned to normal, or as near as could be expected, towards the end of 2021 and therefore progress was resumed, and the outstanding traffic surveys carried out.

Source apportionment studies have been carried out for a number of areas of concern within the city; the Tything, Foregate Street, the Butts, the Cross, Bridge Street, All Saints Road, and Lowesmoor. Source apportionment was undertaken previously for St Johns and London Road in 2017. These reports have been reviewed and relevant data presented to feed into this study. Section 6 of this report provides a review in relation to each specific area of concern.

The outcome of the source apportionment exercise shows that background concentration contributes a significant proportion of the overall concentration of NO_2 measured within each of the study areas varying from 25.97% to 39.27%. Cars were shown to comprise the largest proportion of traffic volume with between 65.74% and 82.54% contributing to between 18.91% and 49.87% of vehicle source emissions. Buses comprise a much smaller proportion of the traffic volume ranging between 1.19% and 10.47% but contributing much larger proportions of vehicle emissions of between 13.7% and 58.19%.

Targeting individual types of vehicles in isolation within most areas of concern is unlikely to lead to the annual mean objective being achieved unless the reductions are very large. For example, reductions of 50% or greater in the emissions from cars would be required within 5

of the areas, with a 100% reduction not being sufficient to achieve compliance within 2 of the locations. In those two locations a 60 to 70% reduction in the number of buses would be necessary to attain the objective. Lowesmoor is an exception where relatively small reductions across one or more vehicle types could see concentrations of NO₂ fall to within the desired levels.

For the majority of the locations it is likely that a reduction across all vehicle types, or combination of several categories, would be required to achieve the objective. The data indicates that a maximum reduction in NO_2 of 37.7% would be required to achieve the objective within all areas. A maximum reduction of 43% would be necessary across all vehicle types to achieve results 5% below the objective, and 48.1% to achieve 10% below the objective.

Appendix A – AQMA & diffusion tube location plans

Figure A1: Worcester City Wide AQMA plan

Figure D.1 – Worcester City AQMA (Political Boundary) and Overview of Monitoring Locations (ID)

Map Data © 2022 Google

Appendix B – EFT data inputs & outputs

Table B1: Traffic count data

	NORCE	ste	rsh	ire					•									
	10100	010	1011				Class	ificati	on Co	ount S	heet		I				I	1
😂 C	count	y c (o u n	CIL														
														Site Num	her 20095(nn		
Road No.	A38			Location.	The Tythir	ng, Worces	ster			Day&Date	. Tuesday	, 3.3.2020		Remarks.	North of S	St. Marys S	t.	
Hour C	ommencing	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Vehicles
Pedal	NB	0	6	9	3	3	7	3	7	6	10	15	19	14	0	0	0	102
Cycles	SB	0	27	35	12	11	10	7	8	7	8	13	13	12	0	0	0	163
	Both	0	33	44	15	14	17	10	15	13	18	28	32	26	0	0	0	265
Motor	То	0	5	5	3	3	3	10	9	4	3	8	5	3	0	0	0	61
Cycles	From	0	5	6	3	5	4	7	4	9	3	9	4	4	0	0	0	63
	Both	0	10	11	6	8	7	17	13	13	6	17	9	7	0	0	0	124
	То	0	678	618	494	444	435	522	563	656	640	700	639	694	0	0	0	7083
Cars	From	0	699	729	653	541	478	466	464	493	516	543	665	557	0	0	0	6804
	Both	0	1377	1347	1147	985	913	988	1027	1149	1156	1243	1304	1251	0	0	0	13887
	То	0	7	11	9	11	8	9	8	12	14	9	6	4	0	0	0	108
Buses	From	0	6	18	13	13	10	10	12	12	18	10	9	10	0	0	0	141
	Both	0	13	29	22	24	18	19	20	24	32	19	15	14	0	0	0	249
Light	То	0	99	86	78	84	90	86	88	95	108	76	56	49	0	0	0	995
Goods	From	0	102	82	61	43	76	69	76	78	67	64	45	56	0	0	0	819
Vehicles	Both	0	201	168	139	127	166	155	164	173	175	140	101	105	0	0	0	1814
Smaller	То	0	5	3	8	7	8	6	10	7	7	6	5	6	0	0	0	78
2-Axle	From	0	8	12	10	15	7	9	5	5	2	4	3	3	0	0	0	83
Lorries	Both	0	13	15	18	22	15	15	15	12	9	10	8	9	0	0	0	161
Bigger	То	0	7	5	8	5	4	5	4	7	4	2	2	1	0	0	0	54
2-Axle	From	0	7	9	7	4	5	4	3	4	2	2	2	1	0	0	0	50
Lorries	Both	0	14	14	15	9	9	9	7	11	6	4	4	2	0	0	0	104
3-Axle	То	0	2	2	2	5	3	2	2	3	2	1	2	0	0	0	0	26
Rigid/Artic	From	0	3	4	2	2	2	1	1	2	2	1	1	0	0	0	0	21
	Both	0	5	6	4	7	5	3	3	5	4	2	3	0	0	0	0	47
4 Axles or	То	0	4	5	4	5	6	3	5	3	2	1	0	0	0	0	0	38
more	From	0	4	2	5	5	2	3	2	6	3	2	1	2	0	0	0	37
Rigid/Artic	Both	0	8	7	9	10	8	6	7	9	5	3	1	2	0	0	0	75
	NB	0	813	744	609	567	564	646	696	793	790	818	734	771	0	0	0	8545
Totals	SB	0	861	897	766	639	594	576	575	616	621	648	743	645	0	0	0	8181
	Both	0	1674	1641	1375	1206	1158	1222	1271	1409	1411	1466	1477	1416	0	0	0	16726

	wor	ces	ters	shire	9		Class	sificat	ion C	ount	Sheet							
	coul	nty	соц	inci	<u> </u>													
														Site Num	ber. 200950	00B		
Road No	A38			Location.	The Tythi	ng, Worce:	ster			Day&Date	. Tuesday	, 3.3.2020		Remarks.	North of S	st. Marys S	t.	
Hour Co	mmencing	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Vehicles
	NB	0	13	19	19	19	18	18	17	27	27	21	18	20	0	0	0	236
TAXIS	SB	0	14	12	19	22	18	14	13	25	22	12	11	17	0	0	0	199
	Both	0	27	31	38	41	36	32	30	52	49	33	29	37	0	0	0	435
	NB	0	13	19	19	19	18	18	17	27	27	21	18	20	0	0	0	236
Totals	SB	0	14	12	19	22	18	14	13	25	22	12	11	17	0	0	0	199
	Both	0	27	31	38	41	36	32	30	52	49	33	29	37	0	0	0	435

V V	VORCE	este	rsh	ire			Class	ificati	on C	ount C	boot							
					1	1	Class	ificati	on Co	ount S	neet				1	1		
	ount	y co	oun	CIL														
														Site Num	ber. 20090	509		
Road No.	A38		1	Location.	Foregate	Street, Wo	rcester		1	Day&Date	e. Tuesday	, 10.3.2020		Remarks.	(Shaw St.	to Castle S	št.)	
		_	_	•		40		40	40		45	40	47	40	40			
Hour C		0	1	8	9	10	11	12	13	14	15	10	17	18	19	20	21	venicies
Pedal		0	10	12	5	7	16	9	9	9	12	12	28	10	0	0	0	139
Cycles	SB Doth	0	14	18	9	5	- 11	0	5	10	10	4	20	10	0	0	0	90
Matan		0	24	30	14	12	21	15	14 5	10	10	10	29	12	0	0	0	229
Curples	From	0	2	2	2	4	2	0	5	0	3	5	4	0	0	0	0	0
Cycles	Both	0	2	2	2	1	2	1	5	3	3	5	4	5	0	0	0	29
		0	255	202	247	252	260	249	206	254	271	277	471	270	0	0	0	2002
Care	From	0	255	303	247	232	200	240	200	0		0	4/1	378	0	0	0	0
Cars	Both	0	255	303	247	252	260	248	286	354	371	377	471	378	0	0	0	3802
	То	0	0	8	13	13	12	12	10	8	5	8	7	4	0	0	0	100
Buses	From	0	6	6	10	10	9	10	10	9	7	5	3	8	0	0	0	03
Buses	Both	0	15	14	23	23	21	22	20	17	12	13	10	12	0	0	0	202
Light	То	0	46	40	49	47	46	41	44	45	48	46	36	26	0	0	0	514
Goods	From	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicles	Both	0	46	40	49	47	46	41	44	45	48	46	36	26	0	0	0	514
Smaller	То	0	1	2	6	4	2	3	4	4	1	2	2	1	0	0	0	32
2-Axle	From	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lorries	Both	0	1	2	6	4	2	3	4	4	1	2	2	1	0	0	0	32
Bigger	То	0	2	5	8	3	1	3	3	1	2	2	1	2	0	0	0	33
2-Axle	From	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lorries	Both	0	2	5	8	3	1	3	3	1	2	2	1	2	0	0	0	33
3-Axle	То	0	5	3	2	1	3	2	2	3	1	2	0	0	0	0	0	24
Rigid/Artic	From	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Both	0	5	3	2	1	3	2	2	3	1	2	0	0	0	0	0	24
4 Axles or	То	0	1	1	2	0	1	0	1	0	0	1	0	0	0	0	0	7
more	From	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rigid/Artic	Both	0	1	1	2	0	1	0	1	0	0	1	0	0	0	0	0	7
	NB	0	331	376	334	331	343	319	364	427	443	455	549	426	0	0	0	4698
Totals	SB	0	20	24	19	15	20	16	15	18	13	9	4	10	0	0	0	183
	Both	0	351	400	353	346	363	335	379	445	456	464	553	436	0	0	0	4881

	wor	ces	ters	shire)		Class	sificat	ion C	ount \$	Sheet							
	coui	nty	cou	nci														
														Site Num	per. 200905	509B		
Road No	. A38			Location.	Foregate	Street, Wo	rcester			Day&Date	. Tuesday,	10.3.2020		Remarks.	Shaw St. t	o Castle S	t.	
Hour Co	mmencing	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Vehicles
Hour Co	mmencing To	6 0	7 15	8 25	9 39	10 24	11 27	12 31	13 31	14 26	15 28	16 26	17 29	18 26	19 0	20	21 0	Vehicles 327
Hour Co TAXIS	To From	6 0 0	7 15 0	8 25 0	9 39 0	10 24 0	11 27 0	12 31 0	13 31 0	14 26 0	15 28 0	16 26 0	17 29 0	18 26 0	19 0 0	20 0 0	21 0 0	Vehicles 327 0
Hour Co TAXIS	To From Both	6 0 0	7 15 0 15	8 25 0 25	9 39 0 39	10 24 0 24	11 27 0 27	12 31 0 31	13 31 0 31	14 26 0 26	15 28 0 28	16 26 0 26	17 29 0 29	18 26 0 26	19 0 0 0	20 0 0	21 0 0 0	Vehicles 327 0 327
Hour Co TAXIS	To From Both NB	6 0 0 0 0	7 15 0 15 15	8 25 0 25 25 25	9 39 0 39 39 39	10 24 0 24 24 24	11 27 0 27 27 27	12 31 0 31 31 31	13 31 0 31 31 31	14 26 0 26 26 26	15 28 0 28 28 28	16 26 0 26 26	17 29 0 29 29 29	18 26 0 26 26 26	19 0 0 0 0	20 0 0 0 0	21 0 0 0 0	Vehicles 327 0 327 327
Hour Co TAXIS Totals	To From Both NB SB	6 0 0 0 0 0	7 15 0 15 15 0	8 25 0 25 25 25 0	9 39 0 39 39 39 0	10 24 0 24 24 24 0	11 27 0 27 27 27 0	12 31 0 31 31 0	13 31 0 31 31 31 0	14 26 0 26 26 0	15 28 0 28 28 28 0	16 26 0 26 26 0	17 29 0 29 29 29 0	18 26 0 26 26 26 0 26 0	19 0 0 0 0 0	20 0 0 0 0 0	21 0 0 0 0 0	Vehicles 327 0 327 327 0

California V	NOrce	aste	rsh	ire														
1999 - V	VUIUC						Class	ificati	on Co	ount S	Sheet							
C C	ount	VCO	oun	CIL														
-																		
														Site Num	ber. 20090	503		
Road No.				Location.	The Butts	, Worceste	er			Day&Date	e. Thursday	y, 12.3.2020		Remarks.	One way	eastbound		
Hour C	ommencing	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Vehicles
Pedal		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cycles	EB	0	9	5	6	3	1	2	4	0	0	0	1	3	0	0	0	34
	Both	0	9	5	6	3	1	2	4	0	0	0	1	3	0	0	0	34
Motor	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cycles	From	0	6	2	2	3	6	3	3	2	1	4	3	4	0	0	0	39
	Both	0	6	2	2	3	6	3	3	2	1	4	3	4	0	0	0	39
	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cars	From	0	402	410	331	283	275	280	353	306	309	434	376	347	0	0	0	4106
	Both	0	402	410	331	283	275	280	353	306	309	434	376	347	0	0	0	4106
	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	From	0	32	45	41	53	50	46	51	49	44	60	46	45	0	0	0	562
	Both	0	32	45	41	53	50	46	51	49	44	60	46	45	0	0	0	562
Light	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Goods	From	0	71	54	49	49	47	48	50	57	55	63	42	32	0	0	0	617
Vehicles	Both	0	71	54	49	49	47	48	50	57	55	63	42	32	0	0	0	617
Smaller	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2-Axle	From	0	4	3	8	5	2	3	1	2	1	2	3	1	0	0	0	35
Lorries	Both	0	4	3	8	5	2	3	1	2	1	2	3	1	0	0	0	35
Bigger	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2-Axle	From	0	2	5	5	6	2	2	1	2	1	1	2	0	0	0	0	29
Lorries	Both	0	2	5	5	6	2	2	1	2	1	1	2	0	0	0	0	29
3-Axle	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rigid/Artic	From	0	3	4	2	2	1	1	1	1	0	1	1	0	0	0	0	17
	Both	0	3	4	2	2	1	1	1	1	0	1	1	0	0	0	0	17
4 Axles or	То	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
more	From	0	0	2	2	1	1	0	0	1	1	0	0	0	0	0	0	8
Rigid/Artic	Both	0	0	2	2	1	1	0	0	1	1	0	0	0	0	0	0	8
	NB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Totals	SB	0	529	530	446	405	385	385	464	420	412	565	474	432	0	0	0	5447
	Both	0	529	530	446	405	385	385	464	420	412	565	474	432	0	0	0	5447

	word	ces	ters	shire)		Class	sificat	ion C	ount \$	Sheet							
	coui	nty	cou	nci														
														Site Num	oer. 200905	503B		
Road No.				Location.	The Butts	Worceste	er			Day&Date	. Thursday	, 12.3.2020)	Remarks.	Taxis only	1		
Hour Co	mmencing	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Vehicles
Hour Co	mmencing To	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 0	14 0	15 0	16 0	17 0	18	19 0	20	21 0	Vehicles 0
Hour Co Taxis	mmencing To EB	6 0 0	7 0 12	8 0 23	9 0 36	10 0 18	11 0 24	12 0 19	13 0 16	14 0 17	15 0 27	16 0 24	17 0 16	18 0 28	19 0 0	20 0	21 0 0	Vehicles 0 260
Hour Co Taxis	To EB Both	6 0 0	7 0 12 12	8 0 23 23	9 0 36 36	10 0 18 18	11 0 24 24	12 0 19 19	13 0 16 16	14 0 17 17	15 0 27 27	16 0 24 24	17 0 16 16	18 0 28 28	19 0 0	20 0 0	21 0 0	Vehicles 0 260 260
Hour Co Taxis	To EB Both NB	6 0 0 0 0	7 0 12 12 0	8 0 23 23 0	9 0 36 36 0	10 0 18 18 0	11 0 24 24 0	12 0 19 19 0	13 0 16 16 0	14 0 17 17 0	15 0 27 27 0	16 0 24 24 0	17 0 16 16 0	18 0 28 28 0	19 0 0 0 0	20 0 0 0 0	21 0 0 0 0	Vehicles 0 260 260 0
Hour Co Taxis Totals	To EB Both NB SB	6 0 0 0 0 0	7 0 12 12 0 12	8 0 23 23 0 23	9 0 36 36 0 36	10 0 18 18 0 18	11 0 24 24 0 24	12 0 19 19 0 19	13 0 16 16 0 16	14 0 17 17 0 17	15 0 27 27 0 27	16 0 24 24 0 24	17 0 16 16 0 16	18 0 28 28 0 28 0 28 0 28	19 0 0 0 0 0 0	20 0 0 0 0 0	21 0 0 0 0 0	Vehicles 0 260 260 0 260

Job Title:	Worcester Town Centre MCC's
Job Number:	TTS-1320-Nov
Client:	Worcestershire CC
Survey Date:	Thursday 11th November 2021
Survey Period:	0700-1900
Survey Type:	Manual Classified Counts
Comments:	There were no incidents likely to affect the outcome of the surveys. Weather - Dry

T	OTAL TRAF	FIC						Job	o Title:				Wo	rcester	Town	Centre	MCC's
	SURVEYS L	TD						Job Nu	mber:						7	ITS-13	20-Nov
	DATA COLLEC'	TION						Survey	Date:				Thu	irsday '	11th No	vembe	er 2021
								Survey	Type:					Manu	al Clas	sified	Counts
Sito	1																
Sile.																	
Location:	Bridge	Street	. Worce	ster													
			,														
						Sou	thboun	d - One	way			Ì					
			TIME	PC	M/C	Cars	Taxi	LGV	OGV1	OGV2	PSV	тот					
			07:00	1	3	149	0	50	8	5	5	221					
			07:15	2	0	235	1	71	10	2	5	326					
			07:30	5	3	324	9	67	6	4	4	422					
			07:45	2	1	316	9	80	8	1	8	425					
			H/TOT	10	7	1024	19	268	32	12	22	1394					
			08:00	2	3	305	12	20	5	3	2	387					
			08:30	2 1	3	321	8	66	7	0	5	411					
			08:45	3	0	332	10	56	9	1	2	413					
			Н/ТОТ	8	7	1291	40	211	24	5	15	1601					
			09:00	1	2	270	9	65	6	5	8	366					
			09:15	2	1	240	15	64	10	6	3	341					
			09:30	1	0	221	9	45	6	0	7	289					
			09:45	0	3	213	7	47	6	1	3	280					
			H/TOT	4	6	944	40	221	28	12	21	1276					
			10:00	1	1	199	4	37	5	4	5	256					
			10:15	0	3	252	6	47	11	2	3	324					
			10:30	0	2	246	9	21	5	1	9	327					
			H/TOT	2	13	945	26	165	25	10	22	1208					
			11:00	0	0	256	4	51	7	5	5	328		-			
			11:15	0	3	252	6	44	6	0	4	315					
			11:30	0	2	273	8	47	8	2	5	345					
			11:45	2	5	293	3	54	5	1	5	368					
			H/TOT	2	10	1074	21	196	26	8	19	1356					
			12:00	1	5	277	8	50	6	3	4	354					
			12:15	3	5	270	9	45	5	2	6	345					
			12:30	3	2	276	4	32	5	1	7	330					
			12:45	2	4	308	9	44	4	1	6	3/8					
			13:00	9	7	282	30	30	20	1	23	343					
			13:15	1	4	294	2	42	6	3	3	355		-			
			13:30	1	1	276	8	48	8	4	6	352					
			13:45	3	6	292	5	42	7	1	6	362					
			H/TOT	10	18	1144	17	171	25	9	18	1412					
			14:00	3	8	288	4	31	4	3	3	344					
			14:15	6	5	356	8	45	6	1	5	432					
			14:30	2	5	323	11	33	3	2	7	386					
			14:45	3	4	348	11	43	5	2	7	423					
			15:00	14	22	1315 34F	34	152	18 5	<u>ठ</u> 2	5	1585					
			15.00	4	4	335	20 8	43	5 5	2	5 7	421					
			15:30	2	4	356	13	40	5	1	6	427		-			
			15:45	2	3	391	8	45	7	0	3	459					
			H/TOT	9	16	1427	49	167	22	5	21	1716					
			16:00	6	7	431	3	39	1	2	3	492					
			16:15	6	6	421	3	49	1	0	5	491					
			16:30	3	1	434	2	49	2	0	5	496					
			16:45	2	0	415	0	44	1	2	4	468					
			H/TOT	17	14	1701	8	181	5	4	17	1947					
			17:00	1	2	431	0	45	1	0	5	485					
			17:15	3	2	443 415	1	34	0	2	0	409		-			
			17:45	3	11	412	0	29	1	0	2	458					
				12	21	1701	1	138	3	2	12	1890		-			
			18:00	4	9	416	1	23	1	0	3	457					1
			18:15	2	7	343	0	21	0	2	2	377					
			18:30	1	4	323	0	13	0	0	1	342					
			18:45	0	2	324	0	17	0	2	2	347					
			H/TOT	7	22	1406	1	74	1	4	8	1523					
			P/TOT	104	172	15103	286	2115	229	86	220	18315					

TC	TAL TRAFFIC						Job	o Title:				Wo	rcester	Town	Centre	MCC's
S 50 S	urveys Ltd						Job Nu	mber:					· .	1	FTS-13	20-Nov
L C C DA	TA COLLECTION						Survey	Date:				Thu	Irsday	11th No	vembe	er 2021
							Survey	Type:					Manu	al Clas	sified	Counts
Site [.]	2															
One.	2															
Location:	All Saints R	load, Wor	cester													
			_													
					Sou	thboun	d - One	way								
		TIME	PC	M/C	Cars	Taxi	LGV	OGV1	OGV2	PSV	тот					
		07:00	0	1	128	1	30	10	3	8	181					
		07:15	1	1	193	2	50	9	3	8	267		_			
		07:30	1	2	270	2	47	4	2	4	335		-			
		H/TOT	2	6	860	10	175	27	10	30	1120					
		08:00	1	1	288	3	35	2	3	6	339					
		08:15	1	3	273	6	35	4	0	8	330					
		08:30	1	2	237	8	39	7	0	7	301					
		08:45	0	4	229	11	37	8	1	9	299					
		H/TOT	3	10	1027	28	146	21	4	30	1269					
		09:00	2	1	240	8 11	36	8	5	/	307					
		09.15	0	2	∠04 186	7	34	0 6	2	0 7	207					
		09:45	1	0	198	8	35	6	1	7	256					
		н/тот	4	3	828	34	137	28	11	29	1074					
		10:00	1	2	186	3	25	4	3	4	228					
		10:15	0	3	207	9	38	10	1	4	272					
		10:30	0	5	177	8	30	9	0	9	238					
		10:45	0	1	204	5	30	8	3	6	257					
		11:00	1	11	182	25	123	31	1	23	995 240					
		11.00	0	2	212	6	33	4	1	5	240		_			
		11:30	0	3	203	6	29	8	3	7	259					
		11:45	0	3	188	4	29	5	3	6	238					
		H/TOT	0	9	785	22	120	26	11	27	1000					
		12:00	1	3	213	8	28	6	3	5	267					
		12:15	3	2	219	8	27	7	2	9	277					
		12:30	0	4	237	6	15	4	1	9	276					
		H/TOT	5	15	915	28	99	19	9	30	1120					
		13:00	1	5	188	3	31	5	2	7	242		_			
		13:15	0	4	230	3	20	6	2	7	272					
		13:30	1	4	205	7	31	7	2	7	264					
		13:45	0	7	209	4	39	5	2	6	272					
		H/TOT	2	20	832	17	121	23	8	27	1050					
		14:00	1	6	220	5	30	7	2	4	275					
		14:15	0	4	244	0	21	0	1	10	292					
		14:45	0	5	243	5	30	3	11	5	321					
		H/TOT	1	17	975	20	106	17	18	27	1181					
		15:00	1	2	221	6	14	2	1	11	258					
		15:15	1	4	251	4	29	6	3	7	305					
		15:30	0	0	319	5	31	3	0	6	364					
	_	15:45	0	3	288	6	36	5	0	5	343					
		16:00	2	9	320	21	110	16	4	29	368					
		16:15	0	2	305	2	20	2	0	9	340					
		16:30	0	3	354	3	47	1	0	5	413					
		16:45	0	2	336	1	25	3	0	6	373					
		H/TOT	2	11	1315	8	123	8	1	26	1494					
		17:00	0	1	334	1	28	1	0	5	370					
		17:15	0	2	338	2	17	2	0	10	371					
		17:30	0	3	338	2	31	0	0	2	376					
		17:45 µ/тот	0	1/	1220	 6	19	<u>U</u>	0	22	362		_			
		18:00	0	3	289	0	26	1	0	4	323					
		18:15	0	8	267	1	9	1	0	4	290					
		18:30	0	4	252	1	5	0	1	1	264					
		18:45	0	5	241	2	9	0	0	4	261					
		н/тот	0	20	1049	4	49	2	1	13	1138					
		P/TOT	22	145	11778	223	1404	221	84	313	14190					

	Тот	AL TRAI	FFIC						Job	o Title:				Wor	cester	Town (Centre	MCC's
	SU	RVEYS L	TD						Job Nu	mber:							FTS-13	20-Nov
P 04	DAT	4 Collec	TION						Survey	Date:				Thu	rsday 1	1th No	vembe	r 2021
									Survey	Type:					Manu	al Clas	sified (Counts
Site:		3																
Locatio	n:	Lowes	smoor, V	Vorces	ter													
				Eastb	ound								West	bound				
TIME	PC	M/C	Cars	Тахі	LGV	OGV1	OGV2	PSV	тот	PC	M/C	Cars	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	3	0	48	1	13	0	0	4	69	0	0	4	0	0	0	0	5	9
07:15	1	1	74	2	23	1	0	3	105	1	0	3	0	1	1	0	5	11
07:30	2	0	71	2	22	0	1	3	101	4	0	4	0	0	0	0	4	12
07:45	1	0	69	3	18	3	0	3	97	2	0	7	2	1	0	1	4	17
н/тот	7	1	262	8	76	4	1	13	372	7	0	18	2	2	1	1	18	49
08.00	3	0	77	2	13	2	0	4	101	2	1	13	1	1	1	0	5	24
08.15	0	0	74	4	14	2	0	4	98	4	0	12	1	1	1	0	1	20
08:30	0	0	80	6	12	1	0	5	104	1	0	20	0	3	0	0	4	28
08:45	0	0	56	3	13	0	0	9	81	1	0	15	3	4	0	0	2	25
	3	0	287	15	52	5	0	22	384	8	1	60	5	9	2	0	12	97
09.00	1	1	55	3	11	1	0	6	78	1	1	11	4	7	0	0	3	27
09.15	0	0	10	6	12	1	1	6	76	3	0	16	1	5	0	0	1	20
00.10	0	0	43	1	11	0	0	5	50	1	0	5	0	2	0	0	-	1/
09.30	0	0	42	8	۵ ۱۱	1	0	5	72		0	Я	3		0	1	2	15
H/TOT	1	1	105	18	11	3	1	22	285	5	1	40	2 8	1/	0	1	16	85
10.00	0	0	30	3	16	2	0	3	63	0	0	11	 	1 1	0	0	3	15
10:00	1	0	28	2	12		0	5	20	0	0	Δ	0	1	0	0	5	15
10:13	2	0	10	2	12	1	1	5	72	0	0	7	2	2	0	0	5	17
10.30	2	1	40	3	10	0	0	- 5	73	0	0	10	2	2	0	0	5	10
10.45	2	1	101	21	50		1	20	280	1	0	27		0	0	0	15	65
11:00	1	0	101	10	12	4	0	20	209	0	0	15	4	2	0	0	5	24
11.00	0	0	40	5	12	2	0	2	75	1	0	7	1	2	0	0	5	10
11.15	0	1	40 50	12	0	2	0	2	73	1	0	17	2	2	0	0	2	27
11.30	1	0	50	12	9	0	0	2	74	- 1	0	17	3	3	0	0	3	21
11.45		0	42	0	10	0	0	5	60	2	2	17	3	3	0	0	0	33
10:00	2		163	33	49	4	0	15	207	4	2	00	0	12	0	0	20	102
12:00	3	2	50	4	14	2	0	5	80	1	0	9	1	1	1	0	3	16
12:15	0	0	43	4	11	2	0	3	63	1	0	21	5	1	1	0	3	32
12.30	0	0	60	1	10	0	0	4	70	3	0	13	3	0	0	0	0	27
12:45	0	0	47	6	10	3	0	9	72		0	20	1	3	0	0	3	27
10:00	3	2	200	21	42	1	0	21	296	5	0	03	10	5	2	0	17	102
13:00	2	1	43	6	11	1	0	2	50	0	0	23	1	3	0	0	3	30
13:15	2	1	48	11	10	4	0	3	79	0	0	9	0	0	0	0	6	15
13.30	2	0	39	2	14	0	0	0	03		2	12	0	2	0	0	5	22
13.45	2	2	30	0	14	0	0	3	04		2	15	0	5	0	0	10	19
14:00	0	3	100	25	49	5	0	14	212	2	3	59	1	5	0	0	10	00
14:00	4	1	38	2	- 11	4	1	3	64	4	0	9	0	1	0	0	5	19
14:15	0	1	50	6	9	1	0	4	71	5	0	17	1	3	0	1	3	30
14:30	0	1	51	7	12	1	0	3	75	4	0	16	0	2	1	0	5	28
14:45	2	4	30	5	4	2	U 4	4	5/	10	0	15	U 4	7	U	U	5	21
15:00	0	- /	1/5	<u></u>	50	ŏ	1	14 	20/	13	0	10	0	1	1	1	٥١ ۸	98
15:00	4	0	50	0	0	0	0	5	70		0	19	0	3	0	U	1	24
15:15	1	0	3/	2	11	0	0	2	53	2	0	6	U 4	0	0	1	5	14
15:30	2	0	1	1	0	0	0	4	8	0	0	13	1	1	0	0	12	27
15:45	1	0	4	0	0	0	0	6	11	2	0	6	0	3	0	0	2	13
HVIOI	8	0	92	8	1/	0	0	17	142	5	0	44	1	/	0	1	20	78
16:00	2	0	4	0	0	0	0	4	10		0	12	2	0	Ű	0	2	1/
16:15	2	0	2	0	0	0	0	4	8	0	0	11	- 1	1	0	0	3	16
16:30	5	0	4	0	1	0	0	9	19	4	1	13	0	1	0	0	4	23
16:45	2	0	5	0	0	0	0	5	12	5	0	13	0	0	0	0	2	20
н/тот	11	0	15	0	1	0	0	22	49	10	1	49	3	2	0	0	11	76
17:00	3	0	4	1	1	0	0	3	12	4	0	19	1	1	0	0	4	29
17:15	6	0	3	0	1	0	0	4	14	1	0	15	0	2	0	0	2	20
17:30	6	0	9	0	0	0	0	4	19	2	1	26	1	0	0	0	5	35
17:45	1	0	6	0	1	0	0	7	15	1	0	17	2	2	0	0	3	25
н/тот	16	0	22	1	3	0	0	18	60	8	1	77	4	5	0	0	14	109
18:00	3	0	6	0	1	0	0	7	17	0	0	17	0	0	0	0	4	21
18:15	2	0	8	0	0	0	0	8	18	1	1	19	0	6	0	0	3	30
18:30	0	1	45	3	2	0	0	6	57	1	1	23	3	1	0	0	3	32
18:45	0	0	55	2	4	0	0	7	68	1	0	21	1	0	0	0	3	26
H/TOT	5	1	114	5	7	0	0	28	160	3	2	80	4	7	0	0	13	109
P/TOT	73	17	1894	175	434	40	4	226	2863	71	11	640	51	83	6	4	190	1056

	Тот	al Traf	FIC						Jok	o Title:				Wor	cester	Town (Centre	MCC's
A 50	SU: Data	RVEYS L	TD						JOD NU	Imber: / Date:				Thu	rsdav 1	1th No	IS-13 vembr	20-NOV ar 2021
									Survey	Type:				ma	Manu	al Clas	sified	Counts
Site:		4																
Locatio	n:	The C	ross/Th	e Forec	late - 4	arm T/	Signal (Crossro	ads									
				Α	- B								A	- C				
TIME	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
07:45	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
H/TOT	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	4
08:00	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3
08:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	4
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1
10:45	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
н/тот	1	0	0	0	0	0	0	0	1	3	0	0	0	0	0	0	0	3
11:00	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
12:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
н/тот	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
13:00	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
14:30 14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3
15:00	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	3
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	4
16:00	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
H/TOT	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	5
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	4
17:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
17:45	0	0	0	0	0	0	0	0		5	0	0	0	0	0	0	0	5
18:00	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
P/TOT	1	0	0	0	0	0	0	0	1	4 38	0	0	0	0	0	0	0	4 38

🚗 🕴	Тоти	AL TRAF	FIC						Jok	o Title:				Wor	cester	Town (Centre	MCC's
💂 🕫	DATA	COLLECT	ID TION						Job Ni Survey	Imber: / Date:				Thu	rsdav 1	1th No	IS-13 vembe	20-NOV or 2021
									Survey	Type:				ina	Manu	al Clas	sified	Counts
0.1																		
Site:		4																
Locatio	on:	The C	ross/Th	e Foreg	jate - 4	arm T/	Signal (Crossro	ads									
	1																	
TIME	PC	МС	Car	A Taxi	- D LGV	OGV1	OGV2	PSV	тот	PC.	MC	Car	A · Taxi		OGV1	OGV2	PSV	тот
07:00	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
H/TOT	1	0	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0
08:00	1	0	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0
08:15	1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
H/TOT	2	0	0	0	0	0	0	7	9	0	0	0	0	0	0	0	0	0
09:00	1	0	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	1	1	0	3	4 5	0	0	0	0	0	0	0	0	0
09:45	1	0	0	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0
H/TOT	3	0	0	0	3	1	0	8	15	0	0	0	0	0	0	0	0	0
10:00	0	0	0	2	1	0	0	3	6	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0
10:45	1	0	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0
11:00	1	0	0	0	0	0	0	11	18 1	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
11:45 H/TOT	0	0	0	2	0	0	0	12	4	0	0	0	0	0	0	0	0	0
12:00	0	0	1	0	0	0	0	4	5	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	1	0	0	4	5	0	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	1	0	0	13	15	0	0	0	0	0	0	0	0	0
13:00	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
13:15 13:30	1	0	0	0	0	0	0	2	4	0	0	0	0	0	0	0	0	0
13:45	0	0	0	1	0	0	0	2	3	0	0	0	0	0	0	0	0	0
H/TOT	2	0	0	1	0	0	0	10	13	0	0	0	0	0	0	0	0	0
14:00	1	0	0	0	0	0	0	5	6	0	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
15:00	1	0	0	0	0	0	0	12	14 2	0	0	0	0	0	0	0	0	0
15:15	1	0	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
15:45 Н/тот	0	0	0	0	0	0	0	<u>1</u> 6	1	0	0	0	0	0	0	0	0	0
16:00	3	0	0	0	0	0	0	3	6	0	0	0	0	0	0	0	0	0
16:15	1	0	0	0	0	0	0	2	3	0	0	0	0	0	0	0	0	0
16:30	2	0	0	0	0	0	0	2	4	0	0	0	0	0	0	0	0	0
H/TOT	6	0	0	0	0	0	0	7	13	0	0	0	0	0	0	0	0	0
17:00	1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0
17:15	1 2	0	0	0	0	0	0	4	5	0	0	0	0	0	0	0	0	0
17:45	2	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
н∕тот	4	0	0	0	0	0	0	7	11	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
18:30	_∠ 1	0	0	0	0	0	0	2	4	0	0	0	0	0	0	0	0	0
18:45	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
H/TOT	4	0	0	0	0	0	0	6	10	0	0	0	0	0	0	0	0	0
	25	U	_ Z	b b	0	_ Z	U U	101	142	II U	U	U U	U U	U	U U	U U	U U	1 U

🚗 👬	TOT	al Traf	FIC						Job	o Title:				Wor	cester	Town (Centre	MCC's
8.50	SUI	rveys Li	[D						Job Nı	mber:							TS-13	20-Nov
	DATA	COLLECT	ION						Survey	/ Date:				Thu	rsday 1	1th No	vembe	er 2021
									Survey	Type:					Manu	al Clas	sified	Counts
Site:		4																
Locatio	n:	The C	ross/Th	e Foreg	jate - 4	arm T/	Signal (Crossro	ads									
				В	- C								В	- D				
TIME	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	12	14
07:15	0	0	0	0	0	0	0	0	0	1	0	0	1	2	0	0	13	17
07:30	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	6	9
07:45	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	/	9
HVIOI	0	0	0	0	0	0	0	0	0	2	0	2	4	2	1	0	38	49
08:00	0	0	0	0	0	0	0	0	0	2	0	1	0	0	1	0		11
08:15	0	0	0	0	0	0	0	0	0	3	0	0	1	1	0	1	4	10
00.30	0	0	0	0	0	0	0	0	0		0	2	2	0	1	0	9	14
06.45	0	0	0	0	0	0	0	0	0	6	0	1	6	1	2	1	28	13
00:00	0	0	0	0	0	0	0	0	0	0	0	4	0	1	2	0	11	40
09.15	0	0	0	0	0	0	0	0	0	2	0	0	4	0	0	0	۵ ۱۱	15
09:30	0	0	0	n	0	0	0	0	0	1	0	2	5	0	0	0	6	14
09:45	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	6	7
Н/ТОТ	0	0	0	0	0	0	0	0	0	3	0	3	14	1	0	0	32	53
10:00	1	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	3	5
10:15	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0	7	10
10:30	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	7	9
10:45	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	6	7
н/тот	1	0	0	0	0	0	0	0	1	0	0	0	7	0	1	0	23	31
11:00	0	0	0	0	0	0	0	0	0	0	0	1	3	0	0	0	5	9
11:15	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	7	11
11:30	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	0	4	7
11:45	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	9	12
H/TOT	0	0	0	0	0	0	0	0	0	1	0	1	10	2	0	0	25	39
12:00	0	0	0	0	0	0	0	0	0	1	0	1	2	0	0	0	4	8
12:15	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	5	8
12:30	0	0	0	0	0	0	0	0	0	2	0	0	5	1	0	0	11	19
12:45	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	6	9
H/TOT	0	0	0	0	0	0	0	0	0	3	0	3	10	2	0	0	26	44
13:00	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	0	2	5
13:15	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	8	10
13:30	0	0	0	0	0	0	0	0	0	1	0	1	6	0	0	0	5	13
13.45	0	0	0	0	0	0	0	0	0	2	0	1	4	0	0	0	20	20
14:00	0	0	0	0	0	0	0	0	0	2	0	0	14	1	0	0	20	11
14:00	0	0	0	0	0	0	0	0	0	 1	0	0	0	0	0	0	4	5
14:30	0	0	0	0	0	0	0	0	0	3	0	0	2	0	0	0	- 6	11
14:45	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0	7	12
н/тот	0	0	0	0	0	0	0	0	0	6	0	2	7	1	0	0	23	39
15:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	5
15:15	0	0	0	0	0	0	0	0	0	1	0	0	3	0	0	0	6	10
15:30	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	14	20
15:45	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	0	6	9
H/TOT	0	0	0	0	0	0	0	0	0	2	0	0	13	0	0	0	29	44
16:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	5	7
16:15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	6	7
16:30	0	0	0	0	0	0	0	0	0	3	0	0	4	0	0	0	9	16
16:45	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	5	8
H/TOT	0	0	0	0	0	0	0	0	0	5	0	1	7	0	0	0	25	38
17:00	0	0	0	0	0	0	0	0	0	3	0	1	3	0	0	0	4	11
17:15	0	0	0	0	0	0	0	0	0	1	0	2	3	0	0	0	5	11
17:30	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	7	11
17:45	0	0	0	0	0	0	0	0	0	1	0	2	2	0	0	0	6	11
н/тот	0	0	0	0	0	0	0	0	0	5	0	7	10	0	0	0	22	44
18:00	0	0	0	0	0	0	0	0	0	2	0	3	3	0	0	0	5	13
18:15	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	3	5
18:30	0	0	0	0	0	0	0	0	0	1	0	5	3	0	0	0	6	15
18:45	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	3	6
H/TOT	0	0	0	0	0	0	0	0	0	5	0	10	7	0	0	0	17	39
P/TOT	1	0	0	0	0	0	0	0	1	41	0	34	109	9	4	⊢ 1	308	I 506

🚔 👭	TOT	AL TRAF	FIC						Job	Title:				Wor	cester	Town (Centre	MCC's
H 476	DATA	COLLECT							Survev	/ Date:				Thu	rsdav 1	1th No	vembe	∠u-inov er 2021
									Survey	Type:					Manu	al Clas	sified	Counts
Site:		4																
Locatio	n:	The C	ross/The	e Foreq	late - 4	arm T/	_ Signal (Crossro	ads									
				B·	- A		1						В	- B		1		
	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	<u>707</u>	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	
07:00	0	0	20 54	4	17	4	0	0	79	0	0	0	0	0	0	0	0	0
07:30	1	1	46	2	9	2	0	0	61	0	0	0	0	0	0	0	0	0
07:45	1	0	85	5	8	2	0	0	101	0	0	0	0	0	0	0	0	0
H/TOT	2	1	213	14	40	8	0	0	278	0	0	0	0	0	0	0	0	0
08:00	3	1	88	4	8 9	2	0	0	110	0	0	0	0	0	0	0	0	0
08:30	0	0	72	7	20	1	0	1	100	0	0	0	0	0	0	0	0	0
08:45	0	1	89	3	14	0	0	0	107	0	0	0	0	0	0	0	0	0
н/тот	5	4	336	21	51	3	0	1	421	0	0	0	0	0	0	0	0	0
09:00	0	2	78	7	13	3	0	0	103	0	0	0	0	0	0	0	0	0
09:15	0	1	65	5 6	14	3	0	0	85	0	0	0	0	0	0	0	0	0
09:45	0	0	69	4	8	3	0	2	86	0	0	0	0	0	0	0	0	0
н/тот	0	3	289	22	45	12	1	3	375	0	0	0	0	0	0	0	0	0
10:00	0	5	57	5	10	2	0	1	80	0	0	0	0	0	0	0	0	0
10:15	0	0	63	7	14 o	4	0	0	88	0	0	0	0	0	0	0	0	0
10:30	0	1	65	9	12	1	2	0	90	0	0	0	0	0	0	0	0	0
H/TOT	0	7	251	25	44	12	3	2	344	0	0	0	0	0	0	0	0	0
11:00	0	1	63	4	14	4	0	0	86	0	0	0	0	0	0	0	0	0
11:15	0	2	70	2	15	4	0	0	93	0	0	0	0	0	0	0	0	0
11:30	1	2	70	3	5	0	0	1	89 103	0	0	0	0	0	0	0	0	0
H/TOT	1	6	296	14	45	8	0	1	371	0	0	0	0	0	0	0	0	0
12:00	1	1	77	4	8	1	0	0	92	0	0	0	0	0	0	0	0	0
12:15	1	4	66	5	13	2	0	0	91	0	0	0	0	0	0	0	0	0
12:30	0	2	71 67	4	8	1	1	0	87 82	0	0	0	0	0	0	0	0	0
H/TOT	4	9	281	15	38	4	1	0	352	0	0	0	0	0	0	0	0	0
13:00	0	0	77	5	5	1	0	1	89	0	0	0	0	0	0	0	0	0
13:15	0	2	79	1	4	4	0	0	90	0	0	0	0	0	0	0	0	0
13:30	0	1	63	4	9	1	0	0	78	0	0	0	0	0	0	0	0	0
13:45 H/TOT	1	4	292	8 18	9 27	7	0	1	93 350	0	0	0	0	0	0	0	0	0
14:00	1	5	68	1	8	0	1	0	84	0	0	0	0	0	0	0	0	0
14:15	0	1	82	4	5	2	0	1	95	0	0	0	0	0	0	0	0	0
14:30	2	1	72	4	8	0	0	1	88	0	0	0	0	0	0	0	0	0
14:45	0	<u>1</u>	203	4	/ 28	1 2	1	2	84 351	0	0	0	0	0	0	0	0	
15:00	1	0	74	2	5	2	1	0	85	0	0	0	0	0	0	0	0	0
15:15	1	2	68	2	8	0	0	0	81	0	0	0	0	0	0	0	0	0
15:30	0	0	64	3	6	1	0	0	74	0	0	0	0	0	0	0	0	0
15:45	1	3	54	3	6	0	0	0	67	0	0	0	0	0	0	0	0	0
16:00	0	1	45	3	 6	0	0	0	55	0	0	0	0	0	0	0	0	0
16:15	1	4	71	4	0	0	0	0	80	0	0	0	0	0	0	0	0	0
16:30	2	0	56	3	13	1	0	0	75	0	0	0	0	0	0	0	0	0
16:45	1	0	43	0	5	0	0	0	49	0	0	0	0	0	0	0	0	0
H/TOT	4	5	215	10	24	<u>1</u>	0	0	259	0	0	0	0	0	0	0	0	0
17:15	2	2	-+5	1	6	0	0	0	69	0	0	0	0	0	0	0	0	0
17:30	1	3	83	0	7	0	0	1	95	0	0	0	0	0	0	0	0	0
17:45	1	1	69	4	5	0	0	0	80	0	0	0	0	0	0	0	0	0
H/TOT	5	6	255	6	21	0	0	1	294	0	0	0	0	0	0	0	0	0
18:00 18:15	0	3	71 81	1	5 0	1	0	0	81 02	0	0	0	0	0	0	0	0	0
18:30	0	2	99	3	3	0	0	0	107	0	0	0	0	0	0	0	0	0
18:45	1	0	93	2	6	0	0	0	102	0	0	0	0	0	0	0	0	0
н/тот	2	11	344	11	14	1	0	0	383	0	0	0	0	0	0	0	0	0
P/TOT	30	69	3325	179	402	62	7	11	4085	0	0	0	0	0	0	0	0	0

🚗 👭	Тоти	AL TRAF	FIC						Jok	o Title:				Wor	cester	Town	Centre	MCC's
💂 🕫	DATA	COLLECT	ID ION						JOD NU	mber:				Thu	reday '	11th No	vombe	20-NOV ar 2021
	-								Survey	Type:				inu	Manu	al Clas	sified	Counts
										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Site:		4																
		_		_														
Locatio	n:	The C	ross/Th	e Foreg	pate - 4	arm T/	Signal (Crossro	ads									
					- D								0	- ^				1
ТІМЕ	PC	мс	Car	Taxi	LGV	OGV1	OGV2	PSV	тот	PC	мс	Car	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	0	0	0	1	0	0	0	0	1	3	0	3	0	2	3	0	0	11
07:15	0	0	0	0	0	1	0	0	1	0	0	4	2	8	1	0	0	15
07:30	0	0	0	0	1	0	0	0	1	2	0	9	4	4	1	0	0	20
07:45	0	0	0	0	0	0	0	0	0	1	0	9	2	6	1	0	0	19
H/TOT	0	0	0	1	1	1	0	0	3	6	0	25	8	20	6	0	0	65
08:00	1	0	0	0	0	0	0	0	1	3	0	б 7	2	1	2	0	0	20
08:30	0	0	0	0	0	1	0	0	1	1	0	6	2	7	0	0	0	16
08:45	0	0	0	0	0	0	0	0	0	0	0	5	3	7	1	0	0	16
H/TOT	1	0	0	0	0	1	0	0	2	5	0	24	11	19	3	0	0	62
09:00	0	0	0	0	0	0	0	0	0	0	0	23	8	9	1	0	0	41
09:15	0	0	0	0	0	0	0	0	0	1	0	18	6	4	1	0	0	30
09:30	0	0	0	0	0	0	0	0	0	0	1	21	6	10	0	0	0	38
H/TOT	0	0	0	0	0	0	0	0	0	1	1	78	24	35	3	0	0	142
10:00	0	0	0	0	0	0	0	0	0	1	0	24	6	4	3	0	0	38
10:15	0	0	0	0	0	0	0	0	0	0	2	18	5	1	0	0	0	26
10:30	0	0	0	0	0	0	0	0	0	0	0	19	5	9	1	0	0	34
10:45	0	0	0	0	0	0	0	0	0	2	0	32	6	7	0	0	0	47
H/TOT	0	0	0	0	0	0	0	0	0	3	2	93	22	21	4	0	0	145
11.00	0	0	0	0	0	0	0	0	0	0	0	28	9	2	0	0	0	29
11:30	0	0	0	0	0	0	0	0	0	0	0	21	9	4	1	0	0	35
11:45	0	0	0	0	0	0	0	0	0	1	1	23	8	4	1	0	0	38
н/тот	0	0	0	0	0	0	0	0	0	1	1	90	32	12	2	0	0	138
12:00	1	0	0	0	0	0	0	0	1	1	0	28	1	3	0	0	0	33
12:15	0	0	0	0	0	0	0	0	0	1	0	18	5	2	0	0	0	26
12:30	0	0	0	0	0	0	0	0	0	0	1	18	10	5	1	0	0	33
H/TOT	2	0	0	0	0	0	0	0	2	3	1	83	21	14	1	0	0	123
13:00	0	0	0	0	0	0	0	0	0	0	0	21	4	3	0	0	0	28
13:15	0	0	0	0	0	0	0	0	0	0	1	26	7	3	0	0	0	37
13:30	1	0	0	0	0	0	0	0	1	0	1	16	8	1	2	0	0	28
13:45	0	0	0	0	0	0	0	0	0	0	0	20	6	4	0	0	0	30
H/101	1	0	0	0	0	0	0	0	1	0	2	83	25	11	2	0	0	123
14.00	0	0	0	0	0	0	0	0	0	2	1	19	6	6	0	0	0	34
14:30	0	0	0	0	0	0	0	0	0	1	1	18	9	2	0	0	0	31
14:45	2	0	0	0	0	0	0	0	2	1	0	15	3	2	0	0	0	21
н/тот	2	0	0	0	0	0	0	0	2	5	2	69	24	12	0	0	0	112
15:00	0	0	0	0	0	0	0	0	0	3	1	15	4	2	0	0	0	25
15:15	0	0	0	0	0	0	0	0	0	1	0	23	5	1	0	0	0	30 25
15:45	0	0	0	0	1	0	0	0	1	2 0	1	17	4	2	0	0	0	20
H/TOT	0	0	1	0	1	0	0	0	2	6	2	67	17	8	0	0	0	100
16:00	1	0	0	1	0	0	0	0	2	0	0	11	7	2	0	0	0	20
16:15	0	0	0	0	0	0	0	0	0	4	0	15	4	3	0	0	0	26
16:30	1	0	0	0	0	0	0	0	1	2	0	14	1	7	0	0	0	24
16:45	0	0	0	1	0	0	0	0	1		0	13	5	0	0	0	0	19
17:00	2	0	0	1	1	0	0	0	4	1	0	16	1/	12	0	0	0	20
17:15	0	0	0	0	0	0	0	0	0	5	0	18	2	2	0	0	0	27
17:30	0	0	0	1	1	0	0	0	2	1	0	19	2	4	0	0	0	26
17:45	0	0	0	1	1	0	0	0	2	2	0	15	1	1	0	0	0	19
н/тот	0	0	0	3	3	0	0	0	6	9	0	68	6	9	0	0	0	92
18:00	1	0	0	0	0	0	0	0	1	2	0	14	4	2	0	0	0	22
18:15	0	0	0	0	0	0	0	0	0	1	0	12	4	2	0	0	0	19
18:30	1	1	0	0	0	0	0	0	1	2	1	27	4	2	0	0	0	36
H/TOT	2	1	0	0	0	0	0	0	3	7	2	73	14	9	0	0	0	105
P/TOT	10	1	1	6	5	2	0	0	25	53	13	806	221	182	21	0	0	1296

🚔 👭	TOTA	AL TRAF	FIC						Jok	o Title:				Wor	cester	Town (Centre	MCC's
💂 🕫	DATA	COLLECT	ION						JOD NU	Imper: / Date:				Thu	ursdav 1	11th No	vembe	20-NOV ar 2021
								;	Survey	Type:					Manu	al Clas	sified	Counts
Site:		4																
Locatio	n.	Tho C	oss/Th	o Foroc	noto - 4	arm T/	Signal (rossro	ade									
LUCANO	<i>/</i> /1.	THE CI	055/11	e i oleg	Jaie - 4		Signar	105510	laus									
				С	- B							2	С	- C				İ –
TIME	PC	МС	Car	Taxi	LGV	OGV1	OGV2	PSV	тот	PC	мс	Car	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
н/тот	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.45 H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P/TOT	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

🚔 👭	TOTA	AL TRAF	FIC						Jok	o Title:				Wor	cester	Town (Centre	MCC's
💂 🕫	DATA	COLLECT	ION						JOD NU Survey	Imper: / Date:				Thu	rsdav 1	1th No	vembe	20-NOV ar 2021
									Survey	Type:					Manu	al Clas	sified	Counts
Site:		4																
Locatio	m.	The Cr	nss/Th	e Forec	iate - 4	arm T/	Signal (Crossro	ads									
Localic	/11.		000, 111					103310										
				D	- A								D	- В				
TIME	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:13	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1
14:45	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
н/тот	1	0	1	0	0	0	0	0	2	1	0	0	0	0	0	0	0	1
15:00	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	1	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	2
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	_0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
18:00	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0 2	1 5	0	0	0	0	0	0	0	5
	4				U U			U U			U			U U			U U	

🚔 👭	TOT	AL TRAF	FIC						Jok	o Title:				Wor	cester	Town (Centre	MCC's
💂 🕫	DATA	COLLECT	ID ION						JOD NU Surves	Imper: / Date:				Thu	ursdav 1	11th No	vembe	20-NOV er 2021
									Survey	Type:					Manu	al Clas	sified	Counts
		_																
Site:		4																
Locatio	n:	The C	ross/Th	e Forec	ate - 4	arm T/	Signal (Crossro	ads									
			1	D	- C								D	- D			1	
	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот	PC	MC	Car	Taxi	LGV	OGV1	OGV2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:00	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45 H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P/TOT	2	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0

Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
The Tything	124	13887	435	1814	265	122	249	16896
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	153	17081	1001	2231	326	150	306	21248
Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
Foregate Street	38	3802	327	514	65	31	202	4979
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	47	4676	752	632	80	38	248	6474
Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
Butts	39	4106	260	617	64	25	562	5673
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	48	5050	598	759	79	31	691	7256
Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
Bridge St	172	15103	286	2115	229	86	220	18211
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	212	18577	658	2601	282	106	271	22706
Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
All Saints Road	145	11778	223	1404	221	84	313	14168
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	178	14487	513	1727	272	103	385	17665
Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
Lowesmoor	28	2534	226	517	46	8	416	3775
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	34	3117	520	636	57	10	512	4885
Site ID	MC	CARS	TAXIS	LGV	OGV1	OGV2	PSV	TOTAL
The Cross	83	4169	521	604	91	8	420	5896
Scale Factor	1.23	1.23	2.3	1.23	1.23	1.23	1.23	
Total	102	5128	1198	743	112	10	517	7810

Location	Average Speed
Butts	10.29
Butts + Shaw Street	15.67
Cross	8.80
The Foregate	17.41
Foregate St	17.23
Tything N	19.24
Upper Tything N	19.57
Barborne Rd N	24.88
Barborne Rd S	29.95
Upper Tything S	31.22
Tything S	18.46
Barborne Rd N&S	27.41
Upper Tything N&S	25.40
Tything N&S	18.85
Average	20.31

Table B2: Traffic speed data

Table B4: Emission Factor Toolkit v8.01 Input

Select Pollutants		Select Outputs	Additional Outputs	Advanced Options			Click the button to:
NOx	CO2	Air Quality Modelling (g/km/s)	Breakdown by Vehicle	Euro Compositions	Primary NO2 Fraction	NOx Annual Emissions Euro Split	💼 Run EFT
PM10	PM2.5	I▼ Emissions Rates (g/km)	Source Apportionment	Compositions	Contributions from Euro Classes	Emissions Euro Split	Clear Input Data
		Annual Link Emissions	PM by Source	Fleet Projection Tool		PM2.5 Annual Emissions Euro Split	
Please Select from	n the Following Options:	Export Outputs					
Area England (not London) Year 2018							
Traffic Format Detailed Option 2 File Name: Worcester City							
Select 'Basic Split' o	or 'Detailed Option 1 to 3' or						
'Alternative	Technologies' above						

SourceID	Road Type	Traffic Flow	% Car	% Taxi (black cab)	% LGV	% Rigid HGV
Bridge St	Urban (not London)	22707	82.34	2.36	11.46	1.24
All Saints Road	Urban (not London)	17665	82.54	2.37	9.78	1.54
Lowesmoor	Urban (not London)	4886	65.74	8.7	13.02	1.17
The Cross	Urban (not London)	15620	68.48	12.53	9.51	1.43
The Tything	Urban (not London)	21248	81.25	3.85	10.5	1.53
Foregate Street	Urban (not London)	6473	74.37	9.49	9.76	1.24
The Butts	Urban (not London)	7256	71.11	6.73	10.46	1.09

% Artic HGV	% Bus and Coach	% Motorcycle	Speed(kph)	No of Hours	Link Length (km)	% Gradient	Flow Direction	% Load
0.47	1.19	0.94	13	24				
0.58	2.18	1.01	13	24				
0.2	10.47	0.7	13	24				
0.13	6.61	1.31	10	24				
0.71	1.44	0.72	19	24				
0.59	3.82	0.73	17	24				
0.43	9.52	0.66	13	24				

Table B5: Emission Factor Toolkit v8.01 Output

Source Name	Pollutant Name	All Vehicles (g/km)	All LDVs (g/km)	All HDVs (g/km)	Petrol Cars (g/km)	Diesel Cars (g/km)	Taxis (g/km)	Petrol LGVs (g/km)	Diesel LGVs (g/km)
Bridge St	NOx	14,425.67511	10,737.10383	3,688.57128	903.33926	6,258.00224	619.04389	3.61483	2,897.99994
All Saints Road	NOx	12,522.89922	8,038.95112	4,483.94810	704.46329	4,880.26267	483.62825	2.39992	1,924.00631
Lowesmoor	NOx	6,538.06337	2,439.89869	4,098.16469	155.18989	1,075.09849	491.04624	0.88371	708.46507
The Cross	NOx	19,247.43933	8,722.23639	10,525.20294	537.25845	3,879.09080	2,460.78590	2.11535	1,800.22437
The Tything	NOx	12,151.10158	8,989.51148	3,161.59010	777.48545	5,090.53681	848.43855	2.97270	2,228.86474
Foregate Street	NOx	4,899.47427	3,018.04167	1,881.43260	221.72319	1,475.88773	656.57392	0.85264	650.68771
The Butts	NOx	9.017.14375	3,400,78731	5.616.35644	249,29193	1.727.00281	564.10768	1.05432	845.24567

Rigid HGVs (g/km)	Artic HGVs (g/km)	Buses/Coaches (g/km)	Motorcycles (g/km)	Full Hybrid Petrol Cars (g/km)	Plug-In Hybrid Petrol Cars (g/km)	Full Hybrid Diesel Cars (g/km)
1,238.07002	439.85659	1,989.70480	21.74110	10.88316	2.40317	20.07625
1,196.18437	422.27476	2,835.64632	18.17309	8.48716	1.87410	15.65633
251.36400	40.27513	3,766.88248	3.48374	1.86968	0.41285	3.44902
1,172.30206	104.25076	9,151.18845	22.33060	6.51113	1.43683	12.48296
1,059.41958	442.77205	1,641.95432	13.57481	9.27402	2.05077	16.31364
285.92426	124.09741	1,455.93003	4.34811	2.65274	0.58628	4.72934
347.76633	128,59356	5.086.46604	4.87792	3.00339	0.66320	5.54038

CNG Buses (g/km) Biomethane Buses (g/km) Biogas Buses (g/km) Hybrid Buses (g/km) FCEV Buses (g/km) B100 Coaches (g/km)

0.33932		-	20.60055	-	
0.48358			29.35906		
0.64239			39.00068		
1.29652			96.16516		
0.38422	-	-	17.05993	-	
0.31050			15.17040		
0.86743			52.66308	-	

All LDVs (%)	All HDVs (%)	Petrol Cars (%)	Diesel Cars (%)	Taxis (%)	Petrol LGVs (%)	Diesel LGVs (%)	Rigid HGVs (%)	Artic HGVs (%)	Buses/Coaches (%)	Motorcycles (%)	Full Hybrid Petrol Cars (%)	Plug-In Hybrid Petrol Cars (%)	Full Hybrid Diesel Cars (%)
74.4%	25.6%	6.3%	43.4%	4.3%	0.0%	20.1%	8.6%	3.0%	13.8%	0.2%	0.1%	0.0%	0.1%
64.2%	35.8%	5.6%	39.0%	3.9%	0.0%	15.4%	9.6%	3.4%	22.6%	0.1%	0.1%	0.0%	0.1%
37.3%	62.7%	2.4%	16.4%	7.5%	0.0%	10.8%	3.8%	0.6%	57.6%	0.1%	0.0%	0.0%	0.1%
45.3%	54.7%	2.8%	20.2%	12.8%	0.0%	9.4%	6.1%	0.5%	47.5%	0.1%	0.0%	0.0%	0.1%
74.0%	26.0%	6.4%	41.9%	7.0%	0.0%	18.3%	8.7%	3.6%	13.5%	0.1%	0.1%	0.0%	0.1%
61.6%	38.4%	4.5%	30.1%	13.4%	0.0%	13.3%	5.8%	2.5%	29.7%	0.1%	0.1%	0.0%	0.1%
37.7%	62.3%	2.8%	19.2%	6.3%	0.0%	9.4%	3.9%	1.4%	56.4%	0.1%	0.0%	0.0%	0.1%

CNG Buses (%) Biomethane Buses (%) Biogas Buses (%) Hybrid Buses (%) FCEV Buses (%) B100 Coaches (%)

0.0%	-	-	0.176	-	-	
0.0%			0.2%	-	-	
0.0%		-	0.6%	-	-	
0.0%		-	0.5%	-	-	
0.0%		-	0.1%	-	-	
0.0%		-	0.3%	-	-	
0.0%		-	0.6%	-	-	

Appendix C – Source Apportionment calculations

Tables C1 to 8: The local contribution apportioned to vehicle class at each monitoring location (calculated in accordance with LAQM.TG16 Box 7.5)

Box 7.5 calculation – Tyn	Local Source (%)	NO₂ µg/m³	Total (%)
T-NO2 (Total (Monitored) nitrogen dioxide)		47.21	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		13.62	
TB-NOx (Total Background nitrous oxides ¹)		18.45	
RB-NOx (Regional Background nitrous oxides ¹)		12.35	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		6.10	
Step2: RB-NO ₂ ³ = TB-NO ₂ × (RB-NOx / TB-NOx)		9.12	19.32%
Step2: LB-NO ₂ ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.50	9.53%
Step3: $L-NO_2^5 = T-NO_2 - TB-NO_2$		33.59	
Step4: % of vehicles from EfT			
Petrol Cars	6.39%	2.15	
Diesel Cars	41.89%	14.07	
Hybrid Cars	0.19%	0.07	
Total cars	48.47%	16.29	34.51%
Taxis	6.99%	2.35	4.98%
Petrol LGVs	0.10%	0.03	
Diesel LGVs	18.29%	6.15	
Total LGVs	18.39%	6.18	13.09%
HGVs	12.38%	4.16	8.82%
Buses/Coaches	13.69%	4.60	9.75%
Motorcycles	0.09%	0.03	0.07%
<u>Total vehicles</u>	<u>100%</u>	<u>33.59</u>	<u>100%</u>

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

2) Local Background nitrous oxides

3) Regional Background nitrogen dioxide contribution

4) Local Background nitrogen dioxide contribution

5) Local sources nitrogen dioxide contribution

Box 7.5 calculation – Fos	Local Source (%)	NO₂ μg/m³	Total %
T-NO2 (Total (Monitored) nitrogen dioxide)		48.51	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		13.62	
TB-NOx (Total Background nitrous oxides ¹)		18.45	
RB-NOx (Regional Background nitrous oxides ¹)		12.35	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		6.10	
Step2: RB-NO2 ³ = TB-NO2 × (RB-NOx / TB-NOx)		9.12	18.82%
Step2: LB-NO ₂ ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.50	9.29%
Step3: $L-NO_2^5 = T-NO_2 - TB-NO_2$		34.89	
Step4: % of vehicles from EfT			
Petrol Cars	4.53%	1.58	
Diesel Cars	30.12%	10.51	
Hybrid Cars	0.07%	0.02	
Total cars	34.72%	12.11	24.95%
Taxis	13.41%	4.68	9.64%
Petrol LGVs	0.02%	0.01	
Diesel LGVs	13.30%	4.64	
Total LGVs	13.32%	4.65	9.58%
HGVs	8.37%	2.92	6.03%
Buses/Coaches	30.08%	10.49	21.60%
Motorcycles	0.09%	0.03	0.06%
Total vehicles	100%	34.88	100%

ap y

Local Background nitrous oxides

2) Eocal Background nitrogen dioxide contribution
 3) Regional Background nitrogen dioxide contribution
 4) Local Background nitrogen dioxide contribution
 5) Local sources nitrogen dioxide contribution

Box 7.5 calculation – Fos2	Local Source (%)	NO₂ μg/m³	Total %
T-NO2 (Total (Monitored) nitrogen dioxide)		35.81	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		13.62	
TB-NOx (Total Background nitrous oxides ¹)		18.45	
RB-NOx (Regional Background nitrous oxides ¹)		12.35	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		6.10	
Step2: RB-NO ²³ = TB-NO ² × (RB-NOx / TB-NOx)		9.12	25.49%
Step2: LB-NO2 ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.50	12.58%
Step3: L-NO ₂ ⁵ = T-NO ₂ – TB-NO ₂		22.19	
Step4: % of vehicles from EfT			
Petrol Cars	4.53%	1.01	
Diesel Cars	30.12%	6.68	
Hybrid Cars	0.07%	0.02	
Total cars	34.72%	12.11	21.50%
Taxis	13.41%	2.98	8.31%
Petrol LGVs	0.02%	0.00	
Diesel LGVs	13.30%	2.95	
Total LGVs	13.32%	2.95	8.25%
HGVs	8.37%	1.86	5.19%
Buses/Coaches	30.08%	6.67	18.62%
Motorcycles	0.09%	0.02	0.06%
Total vehicles	100%	22.19	100%

Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Data from Defra 2018 Background
 Local Background nitrous oxides

3) Regional Background nitrogen dioxide contribution

4) Local Background nitrogen dioxide contribution

5) Local sources nitrogen dioxide contribution

Box 7.5 calculation – But2	Local Source (%)	NO₂ µg/m³	Total %
T-NO2 (Total (Monitored) nitrogen dioxide)		52.43	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		13.62	
TB-NOx (Total Background nitrous oxides ¹)		18.45	
RB-NOx (Regional Background nitrous oxides ¹)		12.35	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		6.10	
Step2: RB-NO ²³ = TB-NO ² × (RB-NOx / TB-NOx)		9.12	17.39%
Step2: LB-NO2 ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.50	8.58%
Step3: $L-NO_2^5 = T-NO_2 - TB-NO_2$		38.81	
Step4: % of vehicles from EfT			
Petrol Cars	2.76%	1.07	
Diesel Cars	19.15%	7.43	
Hybrid Cars	0.04%	0.02	
Total cars	21.95%	8.52	16.25%
Taxis	6.26%	2.43	4.63%
Petrol LGVs	0.04%	0.02	
Diesel LGVs	9.37%	3.64	
Total LGVs	9.41%	3.66	6.96%
HGVs	5.29%	2.05	3.92%
Buses/Coaches	57.03%	22.13	42.21%
Motorcycles	0.05%	0.02	0.04%
<u>Total vehicles</u>	100%	38.81	100%

ap y

Local Background nitrous oxides

2) Eocal Background nitrogen dioxide contribution
 3) Regional Background nitrogen dioxide contribution
 4) Local Background nitrogen dioxide contribution
 5) Local sources nitrogen dioxide contribution
| Box 7.5 calculation – BRS2 | Local Source
(%) | NO₂ µg/m³ | Total % |
|---|---------------------|-----------|---------|
| T-NO2 (Total (Monitored) nitrogen dioxide) | | 47.70 | |
| TB-NO ₂ (Total Background nitrogen dioxide ¹) | | 13.12 | |
| TB-NOx (Total Background nitrous oxides ¹) | | 17.65 | |
| RB-Nox (Regional Background nitrous oxides ¹) | | 11.34 | |
| Step 1: LB-Nox ² = TB-Nox – RB-Nox | | 6.31 | |
| Step2: RB-NO ₂ ³ = TB-NO ₂ × (RB-Nox / TB-Nox) | | 8.43 | 17.67% |
| Step2: LB-NO2 ⁴ = TB-NO2 × (LB-Nox / TB-Nox) | | 4.69 | 9.83% |
| Step3: L-NO ₂ ⁵ = T-NO ₂ – TB-NO ₂ | | 34.58 | |
| Step4: % of vehicles from EfT | | | |
| Petrol Cars | 4.53% | 2.16 | |
| Diesel Cars | 30.12% | 15.00 | |
| Hybrid Cars | 0.07% | 0.08 | |
| Total cars | 34.72% | 17.24 | 36.16% |
| Taxis | 13.41% | 1.48 | 3.11% |
| Petrol LGVs | 0.02% | 0.01 | |
| Diesel LGVs | 13.30% | 6.95 | |
| Total LGVs | 13.32% | 6.96 | 14.59% |
| HGVs | 8.37% | 4.02 | 8.43% |
| Buses/Coaches | 30.08% | 4.82 | 10.10% |
| Motorcycles | 0.09% | 0.05 | 0.11% |
| Total vehicles | 100% | 2/ 57 | 100% |
| 1) Data from Dafra 2010 Dasharan d Mana far madal usan af | 100/0 | 34.37 | 100% |

ap y

Local Background nitrous oxides

Regional Background nitrogen dioxide contribution
Local Background nitrogen dioxide contribution
Local sources nitrogen dioxide contribution

Box 7.5 calculation – Bkc	Local Source (%)	NO₂ µg/m³	Total %
T-NO ₂ (Total (Monitored) nitrogen dioxide)		46.94	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		13.62	
TB-NOx (Total Background nitrous oxides ¹)		18.45	
RB-NOx (Regional Background nitrous oxides ¹)		12.35	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		6.10	
Step2: RB-NO ₂ ³ = TB-NO ₂ × (RB-NOx / TB-NOx)		9.12	19.40%
Step2: LB-NO ₂ ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.50	9.58%
Step3: $L-NO_2^5 = T-NO_2 - TB-NO_2$		33.32	
Step4: % of vehicles from EfT			
Petrol Cars	2.79%	0.93	
Diesel Cars	20.15%	6.71	
Hybrid Cars	0.10%	0.03	
Total cars	23.04%	7.67	16.39%
Taxis	12.79%	4.26	9.07%
Petrol LGVs	0.01%	0.01	
Diesel LGVs	9.36%	3.12	
Total LGVs	9.37%	3.13	6.66%
HGVs	6.60%	2.20	4.69%
Buses/Coaches	48.10%	16.03	34.12%
Motorcycles	0.10%	0.03	0.09%
<u>Total vehicles</u>	100%	33.32	100%

Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Data from Defra 2018 Background
Local Background nitrous oxides

3) Regional Background nitrogen dioxide contribution

4) Local Background nitrogen dioxide contribution

5) Local sources nitrogen dioxide contribution

Box 7.5 calculation – DDASH	Local Source (%)	NO₂ µg/m³	Total %
T-NO ₂ (Total (Monitored) nitrogen dioxide)		43.80	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		13.12	
TB-NOx (Total Background nitrous oxides ¹)		17.65	
RB-NOx (Regional Background nitrous oxides ¹)		11.34	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		6.31	
Step2: RB-NO ₂ ³ = TB-NO ₂ × (RB-NOx / TB-NOx)		8.43	19.25%
Step2: LB-NO ₂ ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.69	10.71%
Step3: $L-NO_2^5 = T-NO_2 - TB-NO_2$		30.68	
Step4: % of vehicles from EfT			
Petrol Cars	5.64%	1.73	
Diesel Cars	39.03%	11.97	
Hybrid Cars	0.07%	0.02	
Total cars	44.74%	13.72	31.38%
Taxis	3.87%	1.19	2.70%
Petrol LGVs	0.02%	0.01	
Diesel LGVs	15.38%	4.72	
Total LGVs	15.40%	4.73	10.77%
HGVs	12.94%	3.97	9.05%
Buses/Coaches	22.90%	7.03	16.02%
Motorcycles	0.15%	0.04	0.11%
Total vehicles			
1) Data from Dafra 2018 Dackground Mans for model year of 2	100%	30.68	100%

2) Local Background nitrous oxides

 Regional Background nitrogen dioxide contributi
Local Background nitrogen dioxide contribution
Local sources nitrogen dioxide contribution Regional Background nitrogen dioxide contribution

Box 7.5 calculation – Lwm1	Local Source (%)	NO₂ μg/m³	Total %
T-NO2 (Total (Monitored) nitrogen dioxide)		41.20	
TB-NO ₂ (Total Background nitrogen dioxide ¹)		14.28	
TB-NOx (Total Background nitrous oxides ¹)		19.51	
RB-NOx (Regional Background nitrous oxides ¹)		13.76	
Step 1: LB-NOx ² = TB-NOx – RB-NOx		5.75	
Step2: RB-NO2 ³ = TB-NO2 × (RB-NOx / TB-NOx)		10.07	24.44%
Step2: LB-NO ₂ ⁴ = TB-NO2 × (LB-NOx / TB-NOx)		4.21	10.22%
Step3: $L-NO_2^5 = T-NO_2 - TB-NO_2$		26.92	
Step4: % of vehicles from EfT			
Petrol Cars	2.37%	0.64	
Diesel Cars	16.44%	4.43	
Hybrid Cars	0.09%	0.02	
Total cars	18.90%	5.09	12.35%
Taxis	7.51%	2.02	4.91%
Petrol LGVs	0.01%	0.01	
Diesel LGVs	10.84%	2.92	
Total LGVs	10.85%	2.93	7.06%
HGVs	4.50%	1.21	2.94%
Buses/Coaches	58.19%	15.66	38.04%
Motorcycles	0.05%	0.01	0.03%
Total vehicles	100%	26.92	100%

Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Data from Defra 2018 Background
Local Background nitrous oxides

3) Regional Background nitrogen dioxide contribution

4) Local Background nitrogen dioxide contribution

5) Local sources nitrogen dioxide contribution

Tables C9 to C16: Nitrous Oxides and Nitrogen Dioxide equivalent reduction required for monitoring locations (in accordance with LAQM.TG16 Box 7.6).

Box 7.6 Calculation – Tyn	NOx/NO ₂ µg/m ³	Reduction required (%)
Step 1 Total NOx	91.55	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	18.45	
Step 3 Local Sources NOx	73.10	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.70	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.17	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.72	
Step 5 NOx equivalent for NO2 40µg/m ³	19.40	26.5
Step 5 NOx equivalent for NO2 38µg/m ³	23.93	32.7
Step 5 NOx equivalent for NO2 36µg/m ³	28.38	38.8
Local NO2 reduction required for 40µg/m ³	8.91	
Local NO2 reduction required for 38µg/m ³	11.00	
Local NO2 reduction required for 36µg/m ³	13.04	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – Fos	NOx/NO₂ µg/m³	Reduction required (%)
Step 1 Total NOx	94.76	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	18.45	
	76.31	
Step 3 Local Sources NOx		
Step 4 Road NOx = 40 NO2 - TB-NO2	53.70	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.17	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.72	
	22.61	20 G
Step 5 NOx equivalent for NO2 40µg/m ³	22.01	29.6
Step 5 NOx equivalent for NO2 38µg/m ³	27.14	35.6
Step 5 NOx equivalent for NO2 36µg/m ³	31.59	41.4
Local NO2 reduction required for 40µg/m ³	10.34	
Local NO2 reduction required for 38µg/m ³	12.41	
Local NO2 reduction required for 36µg/m ³	14.44	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – Fos2	NOx/NO₂ µg/m³	Reduction required (%)
Step 1 Total NOx	64.98	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	18.45	
Step 3 Local Sources NOx	46.53	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.70	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.17	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.72	
Step 5 NOx equivalent for NO2 40µg/m ³	-	-
Step 5 NOx equivalent for NO2 38µg/m ³	-	-
Step 5 NOx equivalent for NO2 36μg/m ³	1.81	3.89
Local NO2 reduction required for 40µg/m ³	-	
Local NO2 reduction required for 38µg/m ³	-	
Local NO2 reduction required for 36µg/m ³	0.86	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – But2	NOx/NO₂ µg/m³	Reduction required (%)
Step 1 Total NOx	104.65	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	18.45	
Step 3 Local Sources NOx	86.20	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.70	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.17	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.72	
Step 5 NOx equivalent for NO2 40µg/m ³	32.50	37.7
Step 5 NOx equivalent for NO2 38µg/m ³	37.03	43
Step 5 NOx equivalent for NO2 36µg/m ³	41.48	48.1
Local NO2 reduction required for 40µg/m ³	14.63	
Local NO2 reduction required for 38µg/m ³	16.67	
Local NO2 reduction required for 36µg/m ³	18.68	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – BRS2	NOx/NO₂ µg/m³	Reduction required (%)
Step 1 Total NOx	92.22	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	17.65	
Step 3 Local Sources NOx	74.57	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.85	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.30	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.84	
Step 5 NOx equivalent for NO2 40 μ g/m ³	20.72	27.8
Step 5 NOx equivalent for NO2 $38 \mu g/m^3$	25.27	33.9
Step 5 NOx equivalent for NO2 36µg/m ³	29.73	39.9
Local NO2 reduction required for 40µg/m ³	9.61	
Local NO2 reduction required for 38µg/m ³	11.72	
Local NO2 reduction required for $36\mu g/m^3$	13.79	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – DDASH	NOx/NO₂ µg/m³	Reduction required (%)
Step 1 Total NOx	82.69	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	17.65	
Step 3 Local Sources NOx	65.04	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.85	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.30	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.84	
Step 5 NOx equivalent for NO2 40µg/m ³	11.19	17.2
Step 5 NOx equivalent for NO2 38µg/m ³	15.74	24.2
Step 5 NOx equivalent for NO2 $36\mu g/m^3$	20.20	31.1
Local NO2 reduction required for 40µg/m ³	5.28	
Local NO2 reduction required for 38µg/m ³	7.42	
Local NO2 reduction required for 36µg/m ³	9.53	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – Bkc	NOx/NO₂ μg/m³	Reduction required (%)
Step 1 Total NOx	89.93	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	18.45	
Step 3 Local Sources NOx	71.48	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.85	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.30	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.84	
Step 5 NOx equivalent for NO2 40µg/m ³	17.63	24.7
Step 5 NOx equivalent for NO2 38µg/m ³	22.18	31
Step 5 NOx equivalent for NO2 $36\mu g/m^3$	26.64	37.3
Local NO2 reduction required for 40µg/m ³	8.22	
Local NO2 reduction required for 38µg/m ³	10.34	
Local NO2 reduction required for 36µg/m ³	12.42	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Box 7.6 Calculation – Lwm1	NOx/NO ₂ µg/m ³	Reduction required (%)
Step 1 Total NOx	76.26	
Step 2 TB-NOx (Total Background nitrous oxides ¹)	19.51	
Step 3 Local Sources NOx	56.75	
Step 4 Road NOx = 40 NO2 - TB-NO2	53.85	
Step 4 Road NOx = 38 NO2 - TB-NO2	49.30	
Step 4 Road NOx = 36 NO2 - TB-NO2	44.84	
Step 5 NOx equivalent for NO2 40µg/m ³	2.90	5.1
Step 5 NOx equivalent for NO2 38µg/m ³	7.45	13.1
Step 5 NOx equivalent for NO2 36µg/m ³	11.91	21
Local NO2 reduction required for 40µg/m ³	1.38	
Local NO2 reduction required for 38µg/m ³	3.53	
Local NO2 reduction required for 36µg/m ³	5.65	

1) Data from Defra 2018 Background Maps for model year of 2018 for relevant local coordinates

Table C 17: Defra's NOx to NO2 Conversion Spreadsheet v8.1 for calculations

Local Authority:		v	Worcester District		Year:	2018
				Traffic Mix:		All non-urban UK traffic
Site ID	Diffusion tube NO ₂ , µg m ⁻³	Background	µug m ⁻³	Road NO _x , µg m ⁻³	User defined local traffic mix	Notes
	μg m ⁻³	NOx	NO ₂		fraction emitted as NO2 (fNO2)	
Tyn	47.21	18.45		73.1		
Fos	48.51	18.45		76.31		
Fos2	35.81	18.45		46.53		
But2	52.43	18.45		86.2		
BRS2	47.7	17.65		74.3		
Bkc	46.94	18.45		71.48		
DDASH	43.8	17.65		64.82		
Lwm1	41.2	19.51		56.56		
40	40		13.62	53.85		
38	38		13.62	49.3		
36	36		13.62	44.84		

References

- Air Quality Consultants (July 2017) Detailed Assessment of Air Quality along London Road, Worcester for Worcester City Council
- Defra (February 2018) Local Air Quality Management Technical Guidance LAQM.TG(16)
- 3. Defra (November 2021) Emissions Factor Toolkit v.11.0 User Guide
- 4. Defra (Oct 2016) Background Concentration Maps User Guide
- Worcestershire Regulatory Services (2017) Worcester Road, St Johns Source Apportionment Report
- Worcestershire Regulatory Services (2021) Air Quality Annual Status Report for Worcester City